浏览全部资源
扫码关注微信
1.兰州交通大学电子与信息工程学院,甘肃 兰州 730070
2.中国铁道科学研究院集团有限公司通信信号研究所,北京 100089
3.北京铁路通信信号运维中心,北京 100038
[ "谢健骊(1972‒ ),男,博士,兰州交通大学电子与信息工程学院教授、博士生导师,主要研究方向为高速铁路智能通信、认知无线电和铁路物联网技术等。" ]
[ "张泽鹏(1998‒ ),男,兰州交通大学电子与信息工程学院博士生,主要研究方向为铁路物联网、智能超表面、轨道交通通信等。" ]
[ "蔺伟(1976‒ ),男,中国铁道科学研究院集团有限公司通信信号研究所研究员、硕士生导师,主要研究方向为铁路专用通信、5G-R、调度指挥和列车运行控制通信技术、铁路物联网应用技术等。" ]
[ "马君(1982‒ ),女,中国铁道科学研究院集团有限公司通信信号研究所正高级工程师,主要研究方向为铁路专用移动通信技术、物联网通信技术等。" ]
[ "欧阳朔(1980‒ ),男,北京铁路通信信号运维中心正高级工程师,主要研究方向为铁路无线通信、铁路物联网技术等。" ]
[ "屈毅(1977‒ ),男,北京铁路通信信号运维中心正高级工程师,主要从事铁路无线通信、数据通信、网络安全、物联网、云技术等方面的技术和运维研究工作。" ]
收稿日期:2025-02-17,
修回日期:2025-03-18,
纸质出版日期:2025-06-10
移动端阅览
谢健骊,张泽鹏,蔺伟等.智能铁路物联网研究综述[J].物联网学报,2025,09(02):1-15.
XIE Jianli,ZHANG Zepeng,LIN Wei,et al.Review of research on smart railway Internet of things[J].Chinese Journal on Internet of Things,2025,09(02):1-15.
谢健骊,张泽鹏,蔺伟等.智能铁路物联网研究综述[J].物联网学报,2025,09(02):1-15. DOI: 10.11959/j.issn.2096-3750.2025.00487.
XIE Jianli,ZHANG Zepeng,LIN Wei,et al.Review of research on smart railway Internet of things[J].Chinese Journal on Internet of Things,2025,09(02):1-15. DOI: 10.11959/j.issn.2096-3750.2025.00487.
人工智能(AI)、大数据、云计算等技术能够在提升铁路物联网(RIoT)感知与连接广度和深度的同时为RIoT系统中数据的智能化分析和处理提供支撑。首先,基于智能物联网和RIoT的相关理论,介绍了智能铁路物联网(SRIoT)的基本概念和体系架构,详细阐述了SRIoT中的关键技术;然后,从铁路建设、安全监控、行车调度等多个角度对智能物联网在铁路行业各领域的应用场景进行综述,聚焦技术和安全两个层面,梳理了铁路物联网面临的问题和挑战;最后,探讨了具有高价值的潜在研究方向。
Artificial intelligence (AI)
cloud computing
big data
and other technologies can not only improve the perception and connection of the railway Internet of things (RIoT) but also provide support for the intelligent analysis of data in the RIoT system. Firstly
based on the theory of smart Internet of things and RIoT
the basic concept and architecture of smart railway Internet of things (SRIoT) were introduced
and the key technologies in SRIoT in detail were expounded. The application scenarios of smart Internet of things in the railway industry were summarized from the perspectives of railway construction
safety monitoring
traffic scheduling
and so on. Focusing on technology and safety
the problems and challenges faced by the railway Internet of things were sorted out. Finally
potential research directions with high value were explored.
SUN P , SHEN S , WAN Y , et al . A survey of IoT privacy security: architecture, technology, challenges, and trends [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 21 ): 34567 - 34591 .
WU C , SHENG J , WANG Y , et al . Spectrum situation awareness for future railway IoT: challenges, opportunities and key technologies [J ] . IEEE Network , 2022 , 37 ( 3 ): 154 - 161 .
MA Y , MA G , WANG N , et al . OTFS-TSMA for massive Internet of things in high-speed railway [J ] . IEEE Transactions on Wireless Communications , 2021 , 21 ( 1 ): 519 - 531 .
QIN Y , CAO Z , SUN Y , et al . Research on active safety methodologies for intelligent railway systems [J ] . Engineering , 2023 , 27 : 266 - 279 .
TIAN J , ZHU L , YU F R , et al . Optimizing edge resources in intelligent railway construction: a two-level game approach [J ] . IEEE Transactions on Vehicular Technology , 2024 , 73 ( 6 ): 7589 - 7602 .
于馨博 , 张舒航 , 张泓亮 . 面向低空物联网的云-边协同演进模型与通信范式 [J ] . 物联网学报 , 2024 , 8 ( 3 ): 76 - 90 .
YU X B , ZHANG S H , ZHANG H L . An edge-cloud collaborative model evolution and communication paradigm in Internet of low-altitude UAV [J ] . Chinese Journal on Internet of Things , 2024 , 8 ( 3 ): 76 - 90 .
中国国家标准化管理委员会 . 物联网参考体系结构 : GB/T 33474-2016 [S ] . 北京 : 中国标准出版社 . 2016 .
Standardization Administration of the People’s Republic of China . Internet of things reference architecture : GB/T 33474-2016 [S ] . Beijing : Standards Press of China , 2016 .
朱力 , 龚泰源 , 梁豪 , 等 . 边缘智能在轨道交通中的应用:前景与展望 [J ] . 电子与信息学报 , 2023 , 45 ( 4 ): 1514 - 1528 .
ZHU L , GONG T Y , LIANG H , et al . Application of edge intelligence in rail transit: prospects and future outlook [J ] . Journal of Electronics & Information Technology , 2023 , 45 ( 4 ): 1514 - 1528 .
SHAIKH M Z , AHMED Z , CHOWDHRY B S , et al . State-of-the-art wayside condition monitoring systems for railway wheels: a comprehensive review [J ] . IEEE Access 2023 , 11 : 13257 - 13279 .
张向民 , 高亮 , 崔日新 , 等 . 青藏铁路格拉段无缝线路状态指标试验研究 [J ] . 铁道工程学报 , 2016 , 33 ( 5 ): 25 - 31+36 .
ZHANG X M , GAO L , CUI R X , et al . Experimental research on the state index of CWR in Golmud-Lhasa section of Qinghai-Tibet railway [J ] . Journal of Railway Engineering Society , 2016 , 33 ( 5 ): 25 - 31+36 .
XU H , WANG W , LI F , et al . Railway slope monitoring based on dual-parameter FBG sensor [J ] . Photonic Sensors , 2024 , 15 ( 1 ): 250121 - 250134 .
SAL S M , CASTILLO M J M , MORENO-NAVARRO F , et al . Smart rail pads for the continuous monitoring of sensored railway tracks: sensors analysis [J ] . Automation in Construction , 2021 , 132 : 103950 - 103962 .
刘正勇 , LIN HTEIN , 刘繄 , 等 . 特种微结构光纤振动传感器及其铁路监测应用 [J ] . 机械工程学报 , 2022 , 58 ( 8 ): 63 - 70 .
LIU Z Y , LIN H , LIU Y , et al . Special microstructured optical fiber based vibration sensor and its application in railway monitoring [J ] . Journal of Mechanical Engineering , 2022 , 58 ( 8 ): 63 - 70 .
PANG Z Y , TAM K W , HUANG G L , et al . Wireless train detection based on null-filled UHF RFID reader antenna for communications-based train control [J ] . IEEE Transactions on Vehicular Technology , 2024 , 73 ( 3 ): 3516 - 3525 .
张辰东 , 王兆瑞 , 金声震 , 等 . 基于SINS/RFID的隧道列车高精度定位方法 [J ] . 北京航空航天大学学报 , 2022 , 48 ( 4 ): 632 - 638 .
ZHANG C D , WANG Z R , JIN S Z , et al . High-precision positioning method based on SINS/RFID for trains in tunnel [J ] . Journal of Beijing University of Aeronautics and Astronautics , 2022 , 48 ( 4 ): 632 - 638 .
ASAD S M , AHMAD J , HUSSAIN S , et al . Mobility prediction-based optimisation and encryption of passenger traffic-flows using machine learning [J ] . Sensors , 2020 , 20 ( 9 ): 2629 - 2652 .
GONG X , CHEN X , ZHONG Z , et al . Enhanced few-shot learning for intrusion detection in railway video surveillance [J ] . IEEE Transactions on Intelligent Transportation Systems , 2021 , 23 ( 8 ): 11301 - 11313 .
HUANG H , ZHAO G , BO Y , et al . Railway intrusion detection based on refined spatial and temporal features for UAV surveillance scene [J ] . Measurement , 2023 , 211 : 112602 - 112621 .
LI C , XIE Z , QIN Y , et al . A multi-scale image and dynamic candidate region-based automatic detection of foreign targets intruding the railway perimeter [J ] . Measurement , 2021 , 185 : 109853 - 109865 .
ZHOU Y , CHEN Q , WANG R , et al . Onboard train localization based on railway track irregularity matching [J ] . IEEE Transactions on Instrumentation and Measurement , 2022 , 71 : 1 - 13 .
MIKHAYLOV D , AMATETTI C , POLONELLI T , et al . Toward the future generation of railway localization exploiting RTK and GNSS [J ] . IEEE Transactions on Instrumentation and Measurement , 2023 , 72 : 1 - 10 .
MOHAMED E M , FOUDA M M . OTFS-based proactive dynamic UAV positioning for high-speed train coverage [J ] . IEEE Open Journal of the Communications Society , 2024 , 5 : 5718 - 5734 .
莫志松 , 安鸿飞 . 新型列控系统列车综合自主定位技术研究 [J ] . 铁道学报 , 2022 , 44 ( 1 ): 56 - 64 .
MO Z S , AN H F . Research on comprehensive autonomous positioning technology of new train control system [J ] . Journal of the China Railway Society , 2022 , 44 ( 1 ): 56 - 64 .
YANG H , DONG S Q , XIE C H . High-speed train positioning based on a combination of Beidou navigation, inertial navigation and an electronic map [J ] . Science China Information Sciences , 2023 , 66 ( 7 ): 172207 - 172222 .
王小敏 , 雷筱 , 张亚东 . 基于改进自适应IMM算法的高速列车组合定位 [J ] . 电子与信息学报 , 2024 , 46 ( 3 ): 817 - 825 .
WANG X M , LEI X , ZHANG Y D . Combined positioning of high-speed train based on improved adaptive IMM algorithm [J ] . Journal of Electronics & Information Technology , 2024 , 46 ( 3 ): 817 - 825 .
CHEN R , LONG W X , MAO G , et al . Development trends of mobile communication systems for railways [J ] . IEEE Communications Surveys & Tutorials , 2018 , 20 ( 4 ): 3131 - 3141 .
李翠然 , 张泽鹏 , 谢健骊 . 基于LSTM动态波束赋形的高速列车越区切换算法 [J ] . 铁道学报 , 2023 , 45 ( 10 ): 78 - 86 .
LI C R , ZHANG Z P , XIE J L . Handover algorithm based on LSTM dynamic beamforming for high-speed train [J ] . Journal of the China Railway Society , 2023 , 45 ( 10 ): 78 - 86 .
谢健骊 , 李琳 , 张泽鹏 , 等 . RIS辅助D2D通信网络资源分配算法 [J ] . 西南交通大学学报 , 2025 : 1 - 9 .
XIE J L , LI L , ZHANG Z P , et al . Resource allocation algorithm for RlS-assisted D2D communication network [J ] . Journal of Southwest Jiaotong University , 2025 : 1 - 9 .
张泽鹏 , 李翠然 , 吴昊 , 等 . 基于列车先验信息的RIS-MIMO系统鲁棒波束成形算法 [J ] . 通信学报 , 2024 , 45 ( 5 ): 29 - 43 .
ZHANG Z P , LI C R , WU H , et al . Robust beamforming algorithm for RIS-MIMO system based on train prior information [J ] . Journal on Communications , 2024 , 45 ( 5 ): 29 - 43 .
李毅 , 蔺伟 . NB-IoT物联网技术在铁路中的应用研究 [J ] . 铁道通信信号 , 2019 , 55 ( S1 ): 29 - 33 .
LI Y , LIN W . Research on application of NB-IoT technology in railway [J ] . Railway Signalling & Communication , 2019 , 55 ( S1 ): 29 - 33 .
ZHAO Y , YU X , CHEN M , et al . Continuous monitoring of train parameters using IoT sensor and edge computing [J ] . IEEE Sensors Journal , 2020 , 21 ( 14 ): 15458 - 15468 .
张嘉驰 , 刘留 , 周涛 , 等 . 智能高速铁路中基于低轨卫星网络的通信关键技术研究 [J ] . 铁道学报 , 2024 , 46 ( 8 ): 69 - 77 .
ZHANG J C , LIU L , ZHOU T , et al . Research on key communication technologies of intelligent HSR based on LEO satellite networks [J ] . Journal of the China Railway Society , 2024 , 46 ( 8 ): 69 - 77 .
杜宇 , 钟昊 , 李明春 . 基于高通量卫星的铁路应急指挥通信系统 [J ] . 中国安全科学学报 , 2021 , 31 ( S1 ): 187 - 191 .
DU Y , ZHONG H , LI M C . Research on railway emergency command communication system based on high-throughput satellite [J ] . China Safety Science Journal , 2021 , 31 ( S1 ): 187 - 191 .
MUNIER F , XIONG Z , SHREEVASTAV R , et al . Positioning of RedCap devices in 5G networks [J ] . IEEE Communications Magazine , 2024 , 62 ( 8 ): 110 - 116 .
匡俊搴 , 赵畅 , 杨柳 , 等 . 一种基于深度学习的异常数据清洗算法 [J ] . 电子与信息学报 , 2022 , 44 ( 2 ): 507 - 513 .
KUANG J Q , ZHAO C , YANG L , et al . An outlier cleaning algorithm based on deep learning [J ] . Journal of Electronics & Information Technology , 2022 , 44 ( 2 ): 507 - 513 .
NASSRA I , CAPELLA J V . Data compression techniques in IoT-enabled wireless body sensor networks: a systematic literature review and research trends for QoS improvement [J ] . Internet of Things , 2023 , 23 : 100806 - 100829 .
CHEN X , YU Q , DAI S , et al . Deep reinforcement learning for efficient IoT data compression in smart railroad management [J ] . IEEE Internet of Things Journal , 2023 , 11 ( 15 ): 25494 - 25504 .
ABADI E I Y , SAMENDI M K , YAGHINI M . Analysis of the relationship between geometric parameters of railway track and twist failure by using data mining techniques [J ] . Engineering Failure Analysis , 2023 , 143 : 106862 - 106883 .
李鑫 , 史天运 , 常宝 , 等 . 基于优化的MsEclat算法的铁路机车事故故障关联规则挖掘 [J ] . 中国铁道科学 , 2021 , 42 ( 4 ): 155 - 165 .
LI X , SHI T Y , CHANG B , et al . Association rule mining for railway locomotive accident and fault based on optimized MsEclat algorithm [J ] . China Railway Science , 2021 , 42 ( 4 ): 155 - 165 .
QIAN K , GAO S , YU L . Marginal frequent itemset mining for fault prevention of railway overhead contact system [J ] . ISA Transactions , 2022 , 126 : 276 - 287 .
FA H , SHUAI B , YANG Z , et al . Mining the accident causes of railway dangerous goods transportation: a logistics-DT-TFP based approach [J ] . Accident Analysis & Prevention , 2024 , 195 : 107421 - 107452 .
PIRES A C , VIANA M C A , SCARAMUSSA L M , et al . Measuring vertical track irregularities from instrumented heavy haul railway vehicle data using machine learning [J ] . Engineering Applications of Artificial Intelligence , 2024 , 127 : 107191 - 107216 .
ZHANG Z , ZAMAN A , XU J , et al . Artificial intelligence-aided railroad trespassing detection and data analytics: methodology and a case study [J ] . Accident Analysis & Prevention , 2022 , 168 : 106594 - 106615 .
SHAIKH M Z , AHMED Z , BARO E N , et al . Deep learning based identification and tracking of railway bogie parts [J ] . Alexandria Engineering Journal , 2024 , 107 : 533 - 546 .
ALZOUBI Y I , MISHRA A , TOPCU A E . Research trends in deep learning and machine learning for cloud computing security [J ] . Artificial Intelligence Review , 2024 , 57 ( 5 ): 132 - 156 .
邓桦 , 宋甫元 , 付玲 , 等 . 云计算环境下数据安全与隐私保护研究综述 [J ] . 湖南大学学报(自然科学版) , 2022 , 49 ( 4 ): 1 - 10 .
DENG H , SONG F Y , FU L , et al . A review of data security and privacy preserving in cloud computing environment [J ] . Journal of Hunan University(Natural Sciences) , 2022 , 49 ( 4 ): 1 - 10 .
CHANG Z , LIU S , XIONG X , et al . A survey of recent advances in edge-computing-powered artificial intelligence of things [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 18 ): 13849 - 13875 .
GUO Q , XU Z , YUAN J , et al . Cloud-edge collaboration-based task offloading strategy in railway IoT for intelligent detection [J ] . Wireless Networks , 2024 : 1 - 16 .
贾利民 , 陈熙元 , 马小平 , 等 . 基于云边交互机制的自主式高速铁路防灾系统架构 [J ] . 中国铁道科学 , 2022 , 43 ( 5 ): 165 - 176 .
JIA L M , CHEN X Y , MA X P , et al . Architecture of autonomous disaster prevention system of high-speed railway based on collaborative cloud and edge mechanism [J ] . China Railway Science , 2022 , 43 ( 5 ): 165 - 176 .
RAMOS A , CORREIA A G , NASROLLAHI K , et al . Machine learning models for predicting permanent deformation in railway tracks [J ] . Transportation Geotechnics , 2024 : 101289 - 101307 .
WANG X , LIU X , BIAN Z . A machine learning based methodology for broken rail prediction on freight railroads: a case study in the United States [J ] . Construction and Building Materials , 2022 , 346 : 128353 - 128376 .
HUANG Y , HE J , ZHU Z . Rapid assessment of seismic risk for railway bridges based on machine learning [J ] . International Journal of Structural Stability and Dynamics , 2024 , 24 ( 6 ): 2450056 - 2450074 .
SRESAKOOLCHAI J , KAEWUNRUEN S . Railway defect detection based on track geometry using supervised and unsupervised machine learning [J ] . Structural Health Monitoring , 2022 , 21 ( 4 ): 1757 - 1767 .
黄自力 , 蔡小强 , 金荣森 , 等 . 结合更新过程与粒子群优化的BP神经网络铁路物资预测模型 [J ] . 铁道科学与工程学报 , 2024 .
HUANG Z L , CAI X Q , JIN R S , et al . The railway material prediction model based on BP neural network combined with renewal process and particle swarm optimization [J ] . Journal of Railway Science and Engineering , 2024 .
SONG X , SONG H , WANG H , et al . Deep learning-based railway foreign object intrusion intelligent perception using attention-aggregated semantic segmentation [J ] . IEEE/ASME Transactions on Mechatronics , 2024 : 1 - 11 .
郑倩 , 甘蜜 , 姚竹 , 等 . 面向高速铁路货运站选址的深度学习模型研究 [J ] . 铁道学报 , 2024 , 46 ( 6 ): 36 - 45 .
ZHENG Q , GAN M , YAO Z , et al . Research on deep learning model for location of high-speed railway freight stations [J ] . Journal of the China Railway Society , 2024 , 46 ( 6 ): 36 - 45 .
GAO T , LI Z , GAO Y , et al . A deep reinforcement learning approach to mountain railway alignment optimization [J ] . Compute-Aided Civil and Infrastructure Engineering , 2022 , 37 ( 1 ): 73 - 92 .
王卫东 , 王梦迪 , 胡文博 , 等 . 基于集成深度学习的钢轨表面伤损精细化分割 [J ] . 铁道工程学报 , 2023 , 40 ( 7 ): 27 - 32+39 .
WANG W D , WANG M D , HU W B , et al . Refinement segmentation of rail surface damage based on integrated deep learning algorithms [J ] . Journal of Railway Engineering Society , 2023 , 40 ( 7 ): 27 - 32+39 .
LI B , GUO T , LI R , et al . Self-adaptive predictive passenger flow modeling for large-scale railway systems [J ] . IEEE Internet of Things Journal , 2023 , 10 ( 16 ): 14182 - 14196 .
ZHU W T , LIN J . Generating correlated digital certificates: framework and applications [J ] . IEEE Transactions on Information Forensics and Security , 2016 , 11 ( 6 ): 1117 - 1127 .
MALANI S , SRINIVAS J , DAS A K , et al . Certificate-based anonymous device access control scheme for IoT environment [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 6 ): 9762 - 9773 .
IBADAH N , BENAVENTE P C , PAHL M O . Securing the future of railway systems: a comprehensive cybersecurity strategy for critical on-board and track-side infrastructure [J ] . Sensors , 2024 , 24 ( 24 ): 8218 - 8240 .
ALLAMI A , NICEWARNER T , GOSS K , et al . Oblivious and distributed firewall policies for securing firewalls from malicious attacks [J ] . Computers & Security , 2025 , 150 : 104201 - 104224 .
BAGHERI S , SHAMELI S A . Dynamic firewall decomposition and composition in the cloud [J ] . IEEE Transactions on Information Forensics and Security , 2020 , 15 : 3526 - 3539 .
吴昊 , 郝佳佳 , 卢云龙 . 物联网场景下基于蜜场的分布式网络入侵检测系统研究 [J ] . 通信学报 , 2024 , 45 ( 1 ): 106 - 118 .
WU H , HAO J J , LU Y L . Research on distributed network intrusion detection system for IoT based on honeyfarm [J ] . Journal on Communications , 2024 , 45 ( 1 ): 106 - 118 .
LEE C Y , LIN C H , CHANG Z L , et al . Joint resource allocation and intrusion prevention system deployment for edge computing [J ] . IEEE Transactions on Services Computing , 2024 , 17 ( 5 ): 2502 - 2515 .
ALI S , LI Q , YOUSAFZAI A . Blockchain and federated learning-based intrusion detection approaches for edge-enabled industrial IoT networks: a survey [J ] . Ad Hoc Networks , 2024 , 152 : 103320 - 103350 .
LIU X , WANG J , WANG M , et al . Improved LTE-R access authentication scheme based on blockchain and secgear [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 6 ): 10537 - 10550 .
ZHAO R R , LI C R , XIE J L , et al . Handoff algorithm of high speed railway wireless communication based on CNN-WaveNet [J ] . Journal of Measurement Science and Instrumentation , 2023 , 1 - 11 .
孙僖泽 , 周福才 , 李宇溪 , 等 . 基于可搜索加密机制的数据库加密方案 [J ] . 计算机学报 , 2021 , 44 ( 4 ): 806 - 819 .
SUN X Z , ZHOU F C , LI Y X , et al . A database encryption scheme based on searchable encryption [J ] . Chinese Journal of Computers , 2021 , 44 ( 4 ): 806 - 819 .
LI Y , LI Z , YANG B , et al . Algebraic signature-based public data integrity batch verification for cloud-IoT [J ] . IEEE Transactions on Cloud Computing , 2023 , 11 ( 3 ): 3184 - 3196 .
梁秀波 , 吴俊涵 , 赵昱 , 等 . 区块链数据安全管理和隐私保护技术研究综述 [J ] . 浙江大学学报(工学版) , 2022 , 56 ( 1 ): 1 - 15 .
LIANG X B , WU J H , ZHAO Y , et al . Review of blockchain data security management and privacy protection technology research [J ] . Journal of Zhejiang University(Engineering Science) , 2022 , 56 ( 1 ): 1 - 15 .
XU Y , XU G , LIU Y , et al . A survey of the fusion of traditional data security technology and blockchain [J ] . Expert Systems with Applications , 2024 : 124151 - 124168 .
LI H , GE L , TIAN L . Survey: federated learning data security and privacy-preserving in edge-Internet of things [J ] . Artificial Intelligence Review , 2024 , 57 ( 5 ): 130 - 149 .
肖雄 , 唐卓 , 肖斌 , 等 . 联邦学习的隐私保护与安全防御研究综述 [J ] . 计算机学报 , 2023 , 46 ( 5 ): 1019 - 1044 .
XIAO X , TANG Z , XIAO B , et al . A survey on privacy and security issues in federated learning [J ] . Chinese Journal of Computers , 2023 , 46 ( 5 ): 1019 - 1044 .
WANG Y , WANG Z , MA T , et al . Research on the realization path of railway intelligent construction based on system engineering [J ] . Sustainability , 2022 , 14 ( 11 ): 6945 - 6963 .
金晶 , 李宗昊 , 朱亮 , 等 . BP神经网络在铁路建设风险评估中的应用 [J ] . 铁道工程学报 , 2019 , 36 ( 3 ): 103 - 109 .
JIN J , LI Z H , ZHU L , et al . Application of BP neural network in risk evaluation of railway construction [J ] . Journal of Railway Engineering Society , 2019 , 36 ( 3 ): 103 - 109 .
HE Q , GAO T , GAO Y , et al . A bi-objective deep reinforcement learning approach for low-carbon-emission high-speed railway alignment design [J ] . Transportation Research Part C: Emerging Technologies , 2023 , 147 : 104006 - 104023 .
缪鹍 , 戴炎林 , 高鸿剑 . 基于深度强化学习的铁路纵断面智能设计模型研究 [J ] . 铁道学报 , 2024 , 46 ( 9 ): 102 - 110 .
MIAO K , DAI Y L , GAO H J . Study on deep reinforcement learning model for railway vertical alignment design [J ] . Journal of the China Railway Society , 2024 , 46 ( 9 ): 102 - 110 .
刘少非 , 侯大山 . 基于支持向量机的铁路隧道洞身工程造价预测 [J ] . 铁道工程学报 , 2022 , 39 ( 5 ): 108 - 113 .
LIU S F , HOU D S . Construction cost prediction of main tunnel in railway tunnel based on support vector machine [J ] . Journal of Railway Engineering Society , 2022 , 39 ( 5 ): 108 - 113 .
ZHANG H , WU Y , CHENG J , et al . A deep learning-based surrogate model for probabilistic analysis of high-speed railway tunnel crown settlement in spatially variable soil considering construction process [J ] . Engineering Applications of Artificial Intelligence , 2024 , 134 : 108752 - 108771 .
孙波 , 孟庆虎 , 何晖 . 基于改进混合蛙跳算法优化SVM的道岔故障诊断 [J ] . 铁道学报 , 2024 , 46 ( 7 ): 81 - 90 .
SUN B , MENG Q H , HE H . Tumout fault diagnosis based on improved shuffled frog leaping algorithm to optimize SVM model [J ] . Journal of the China Railway Society , 2024 , 46 ( 7 ): 81 - 90 .
杨勇 , 可婷 , 胡启正 , 等 . 基于CNN-LSTM-Attention的ZPW-2000A轨道电路故障诊断方法 [J ] . 铁道科学与工程学报 , 2025 .
YANG Y , KE T , HU Q Z , et al . Fault diagnosis of ZPW-2000A track circuit based on CNN-LSTM-Attention [J ] . Journal of Railway Science and Engineering , 2025 .
徐凯 , 涂永超 , 徐文轩 , 等 . 自适应多智能体算法优化深度网络的列车智能驾驶 [J ] . 铁道科学与工程学报 , 2022 , 19 ( 10 ): 2820 - 2832 .
XU K , TU Y C , XU W X , et al . Intelligent train operation based on adaptive multi-agent algorithm optimization for deep network [J ] . Journal of Railway Science and Engineering , 2022 , 19 ( 10 ): 2820 - 2832 .
ZHU L , GONG T , WEI S , et al . Collaborative train and edge computing in edge intelligence based train autonomous operation control systems [J ] . IEEE Transactions on Intelligent Transportation Systems , 2024 , 25 ( 9 ): 11991 - 12004 .
王荣笙 , 袁志明 , 闫璐 , 等 . 高速铁路多列车运行态势推演方法 [J ] . 自动化学报 . 2025 .
WANG R S , YUAN Z M , YAN L , et al . Deductive approach of multi-train operation situation for high-speed railway [J ] . Acta Automatica Sinica . 2025 .
ZHENG S , JING L , LIU K , et al . Crash energy management optimization of high-speed trains by machine learning methods [J ] . International Journal of Mechanical Sciences , 2024 , 270 : 109108 - 109125 .
吴卫 , 阴佳腾 , 陈照森 , 等 . 基于深度强化学习DDDQN的高速列车智能调度调整方法 [J ] . 铁道科学与工程学报 , 2024 , 21 ( 4 ): 1298 - 1308 .
WU W , YIN J T , CHEN Z S , et al . Intelligent rescheduling optimization method of high-speed railway based on deep reinforcement learning DDDQN [J ] . Journal of Railway Science and Engineering , 2024 , 21 ( 4 ): 1298 - 1308 .
刘辉 , 代学武 , 崔东亮 , 等 . 基于参数自适应蚁群算法的高速列车行车调度优化 [J ] . 控制与决策 , 2021 , 36 ( 7 ): 1581 - 1591 .
LIU H , DAI X W , CUI D L , et al . Optimization of high-speed train operation scheduling based on parameter adaptive improved ant colony algorithm [J ] . Control and Decision , 2021 , 36 ( 7 ): 1581 - 1591 .
孙国锋 , 景云 , 李和壁 , 等 . 基于旅客多维出行需求的列车开行方案与票价联合优化方法 [J ] . 中国铁道科学 , 2024 , 45 ( 6 ): 224 - 235 .
SUN G F , JING Y , LI H B , et al . Joint optimization method of train line planning and ticket pricing based on muli-dimensional travel demand of passengers [J ] . China Railway Science , 2024 , 45 ( 6 ): 224 - 235 .
ZHAN Y , YUAN F , SHI R , et al . PriTKT: a blockchain-enhanced privacy-preserving electronic ticket system for IoT devices [J ] . Sensors , 2024 , 24 ( 2 ): 496 - 517 .
戴智丞 , 李得伟 , 郭佳 . 高速铁路旅客站内无源定位框架研究 [J ] . 中国铁道科学 , 2024 , 45 ( 6 ): 212 - 223 .
DAI Z C , LI D W , GUO J . Research on passive in-station positioning framework for passengers of high-speed railway [J ] . China Railway Science , 2024 , 45 ( 6 ): 212 - 223 .
GAO Y , JIA C , WANG Z , et al . A cost-effective approach for the integrated optimization of line planning and timetabling in an urban rail transit line [J ] . Applied Sciences . 2024 , 14 ( 14 ): 2076 - 3417 .
段力伟 , 杨航 , 陈坚 . 考虑枢纽延误的集装箱公铁联运多目标路径优化 [J ] . 交通运输系统工程与信息 , 2024 , 24 ( 6 ): 275 - 285 .
DUAN L W , YANG H , CHEN J . Multi-objective path optimization of container road-rail intermodal transportation considering hub delays [J ] . Journal of Transportation Systems Engineering and Information Technology , 2024 , 24 ( 6 ): 275 - 285 .
CHEN Y T , SUN E W , CHANG M F , et al . Pragmatic real-time logistics management with traffic IoT infrastructure: big data predictive analytics of freight travel time for Logistics 4.0 [J ] . International Journal of Production Economics , 2021 , 238 : 108157 - 108180 .
张英贵 , 姚璎华 , 高全 , 等 . 铁路集装箱混合货物平衡装载布局优化模型与算法 [J ] . 交通运输系统工程与信息 , 2022 , 22 ( 2 ): 214 - 222 .
ZHANG Y G , YAO Y H , GAO Q , et al . Optimization model and algorithm of balanced loading layout of railway container mixed goods [J ] . Journal of Transportation Systems Engineering and Information Technology , 2022 , 22 ( 2 ): 214 - 222 .
ZHANG Y , LIU J , AN M , et al . A gauge modification-based railway out-of-gauge freight transportation route decision-making methodology [J ] . Alexandria Engineering Journal , 2023 , 68 : 181 - 195 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构