1.哈尔滨工业大学(深圳)空天网络与智能感知重点实验室,广东 深圳 518000
2.香港科技大学(广州)物联网学域,广东 广州 511453
3.中国电子科技集团公司第五十四研究所 综合时空网络与装备技术全国重点实验室,河北 石家庄 050081
4.中国电子科技集团公司第五十四研究所,河北 石家庄 050081
[ "曾文敏(2001‒ ),女,哈尔滨工业大学(深圳)硕士生,主要研究方向为超宽带定位。" ]
[ "郑柏烽(2003‒ ),男,哈尔滨工业大学(深圳)在读,主要研究方向为超宽带定位、多传感器融合定位。" ]
[ "刘晋廷(1999‒ ),男,香港科技大学(广州)硕士生,主要研究方向为无线传感器网络。" ]
[ "鲍亚川(1985‒ ),男,博士,中国电子科技集团公司第五十四研究所研究员,主要研究方向为卫星导航、室内地下导航。" ]
[ "尹继凯(1972‒ ),男,硕士,中国电子科技集团公司第五十四研究所研究员,主要研究方向为卫星导航。" ]
[ "李建佳(1997‒ ),男,中国电子科技集团公司第五十四研究所综合时空网络与装备技术全国重点实验室博士生,研究方向为阵列式高精度测角定位技术。" ]
[ "张霆廷(1980‒ ),男,哈尔滨工业大学(深圳)教授、博士生导师,信息科学与技术学院院长,主要研究方向为无线定位理论、脉冲超宽带技术、通信感知一体化、车联网。" ]
收稿:2025-03-05,
修回:2025-06-10,
纸质出版:2025-12-10
移动端阅览
曾文敏,郑柏烽,刘晋廷等.非视距条件下基于特征融合的UWB到达角估计方法[J].物联网学报,2025,09(04):51-61.
ZENG Wenmin,ZHENG Bofeng,LIU Jinting,et al.Feature fusion method for UWB angle of arrival estimation under non-line-of-sight conditions[J].Chinese Journal on Internet of Things,2025,09(04):51-61.
曾文敏,郑柏烽,刘晋廷等.非视距条件下基于特征融合的UWB到达角估计方法[J].物联网学报,2025,09(04):51-61. DOI: 10.11959/j.issn.2096-3750.2025.00495.
ZENG Wenmin,ZHENG Bofeng,LIU Jinting,et al.Feature fusion method for UWB angle of arrival estimation under non-line-of-sight conditions[J].Chinese Journal on Internet of Things,2025,09(04):51-61. DOI: 10.11959/j.issn.2096-3750.2025.00495.
超宽带(UWB
ultra-wideband)技术能够提供高精度的定位信息,在室内定位中具有显著优势。到达角(AOA
angle of arrival)估计作为UWB定位的关键技术之一,对提高定位精度至关重要。然而,在实际应用中,UWB AOA估计面临着诸多挑战,尤其是在非视距(NLOS
non-line-of-sight)、天线硬件损伤、环境变化情况等复杂情况下,这些因素会造成信号失真和测量偏差,从而降低估计的精度,而传统的建模方法往往难以有效处理这些非线性问题。因此,设计了一种基于特征融合的UWB AOA估计方法。该方法融合了CIR数据和双天线接收信号特征,并引入Transformer编码器对复杂信号进行深度挖掘,以提升AOA估计的精度。实验结果表明,所提方法在NLOS条件下可以实现高精度的AOA估计。
Ultra-wideband (UWB) technology is recognized for its ability to provide high-precision positioning information
offering significant advantages in indoor positioning. Angle of arrival (AOA) estimation
as one of the key technologies in UWB positioning
is considered crucial for improving positioning accuracy. However
in practical applications
UWB AOA estimation is faced with numerous challenges
particularly in complex environments such as non-line-of-sight (NLOS) conditions
antenna hardware impairments and environmental variations. These factors are known to cause signal distortion and measurement deviations
thereby reducing estimation accuracy. Traditional modeling methods are often found inadequate in effectively addressing these nonlinear issues. Therefore
a feature fusion-based UWB AOA estimation method was designed. This approach integrated channel impulse response (CIR) data and dual-antenna received signal features
while a Transformer encoder was introduced to deeply analyze complex signals
thereby enhancing AOA estimation accuracy. Experimental results demonstrated that the proposed method could achieve high-precision AOA estimation under NLOS conditions.
DABOVE P , DI PIETRA V , PIRAS M , et al . Indoor positioning using ultra-wide band (UWB) technologies: positioning accuracies and sensors' performances [C ] // Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS) . Piscataway : IEEE Press , 2018 : 175 - 184 .
GAO Y K , POSTOLACHE O , YANG Y S , et al . UWB system and algorithms for indoor positioning [C ] // Proceedings of the 2021 Telecoms Conference (ConfTELE) . Piscataway : IEEE Press , 2021 : 1 - 6 .
TIAN D D , XIANG Q . Research on indoor positioning system based on UWB technology [C ] // Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC) . Piscataway : IEEE Press , 2020 : 662 - 665 .
MAJEED A , ARSAT R , BAHARUDIN M A , et al . Indoor positioning based ranging: a review and literature survey of UWB and Li-fi technologies [J ] . ELEKTRIKA- Journal of Electrical Engineering , 2024 , 23 ( 1 ): 18 - 30 .
CAO B , WANG S B , GE S R , et al . Improving positioning accuracy of UWB in complicated underground NLOS scenario using calibration, VBUKF, and WCA [J ] . IEEE Transactions on Instrumentation and Measurement , 2021 , 70 : 8501013 .
CAO B , JIANG C X , FAN S M , et al . Improving the localization accuracy and robustness of a UWB system using VB-CSRUKF and RTS in harsh underground NLOS environments [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 12 ): 22790 - 22802 .
贾宇涛 , 李冠华 , 潘红光 , 等 . 基于UWB与PDR的井下人员融合定位方法 [J ] . 工矿自动化 , 2024 , 50 ( 6 ): 96 - 102, 135 .
JIA Y T , LI G H , PAN H G , et al . A fusion positioning method for underground personnel based on UWB and PDR [J ] . Journal of Mine Automation , 2024 , 50 ( 6 ): 96 - 102, 135 .
ZHAO K , ZHU M H , XIAO B , et al . Joint RFID and UWB technologies in intelligent warehousing management system [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 12 ): 11640 - 11655 .
刘斌 , 陈刚 , 袁浩 , 等 . 基于UWB的危化品智能仓储管理系统研究 [J ] . 工业安全与环保 , 2022 , 48 ( 10 ): 32 - 36, 41 .
LIU B , CHEN G , YUAN H , et al . Research on intelligent warehouse management system of hazardous chemicals based on UWB technology [J ] . Industrial Safety and Environmental Protection , 2022 , 48 ( 10 ): 32 - 36, 41 .
FENG T , YU Y , WU L , et al . A human-tracking robot using ultra wideband technology [J ] . IEEE Access , 2018 , 6 : 42541 - 42550 .
CHEOK K C , RADOVNIKOVICH M , VEMPATY P , et al . UWB tracking of mobile robots [C ] // Proceedings of the 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications . Piscataway : IEEE Press , 2010 : 2615 - 2620 .
WANG Y , WU S H , LEI C J , et al . A review on wireless networked control system: the communication perspective [J ] . IEEE Internet of Things Journal , 2024 , 11 ( 5 ): 7499 - 7524 .
RUZAIJ AL-OKBY M F , RODDELKOPF T , BURGDORF S J , et al . Multi-tag UWB-based indoor positioning system for objects tracking [C ] // Proceedings of the 2024 IEEE 22nd Jubilee International Symposium on Intelligent Systems and Informatics (SISY) . Piscataway : IEEE Press , 2024 : 415 - 422 .
NKROW R E , SILVA B , BOSHOFF D , et al . NLOS identification and mitigation for time-based indoor localization systems: survey and future research directions [J ] . ACM Computing Surveys , 2024 , 56 ( 12 ): 1 - 41 .
SU C , ZHANG F S , JIN B H , et al . UWBLoc: NLoS mitigation for practical UWB localization [C ] // Proceedings of the 2023 IEEE Smart World Congress (SWC) . Piscataway : IEEE Press , 2024 : 1 - 8 .
程雪聪 , 杨俊雅 , 张益鹏 . UWB非视距误差抑制算法研究 [J ] . 科技与创新 , 2024 ( 12 ): 1 - 6 .
CHENG X C , YANG J Y , ZHANG Y P . Research on UWB NLOS error suppression algorithm [J ] . Science and Technology Innovation , 2024 ( 12 ): 1 - 6 .
SMAOUI N , HEYDARIAAN M , GNAWAIL O . Single-antenna AoA estimation with UWB radios [C ] // Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway : IEEE Press , 2021 : 1 - 7 .
ZHANG Y W , BROWN A K , MALIK W Q , et al . High resolution 3-D angle of arrival determination for indoor UWB multipath propagation [J ] . IEEE Transactions on Wireless Communications , 2008 , 7 ( 8 ): 3047 - 3055 .
ZENG W M , ZHANG J L , ZHANG T T . A robust machine learning based UWB AOA estimation method [C ] // Proceedings of the 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring) . Piscataway : IEEE Press , 2024 : 1 - 5 .
MUQAIBEL A H , ALAWSH S A , BINMAKHASHEN G M . Under-sampled UWB NLOS/LOS channel classification using machine learning [J ] . Arabian Journal for Science and Engineering , 2025 , 50 ( 8 ): 6095 - 6108 .
HUANG C , MOLISCH A F , HE R S , et al . Machine learning-enabled LOS/NLOS identification for MIMO systems in dynamic environments [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 6 ): 3643 - 3657 .
POULOSE A , HAN D S . UWB indoor localization using deep learning LSTM networks [J ] . Applied Sciences , 2020 , 10 ( 18 ): 6290 .
NASERI M , SHAHID A , GORDEBEKE G J , et al . Machine learning-based angle of arrival estimation for ultra-wide band radios [J ] . IEEE Communications Letters , 2022 , 26 ( 6 ): 1273 - 1277 .
LEDERGERBER A , HAMER M , D’ANDREA R . Angle of arrival estimation based on channel impulse response measurements [C ] // Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) . Piscataway : IEEE Press , 2020 : 6686 - 6692 .
WANG T Y , MAN Y L , SHEN Y . A deep learning based AoA estimation method in NLOS environments [C ] // Proceedings of the 2021 IEEE Globecom Workshops (GC Wkshps) . Piscataway : IEEE Press , 2022 : 1 - 6 .
MARGIANI T , CORTESI S , KELLER M , et al . Angle of arrival and centimeter distance estimation on a smart UWB sensor node [J ] . IEEE Transactions on Instrumentation and Measurement , 2023 , 72 : 9508110 .
YANG H C , WANG Y J , SEOW C , et al . UWB NLOS identification and mitigation based on bidirectional encoder representations from transformer (BERT) deep learning [C ] // Proceedings of the 2024 14th International Conference on Indoor Positioning and Indoor Navigation (IPIN) . Piscataway : IEEE Press , 2024 : 1 - 6 .
TOMOVIĆ S , BREGAR K , JAVORNIK T , et al . Transformer-based NLoS detection in UWB localization systems [C ] // Proceedings of the 2022 30th Telecommunications Forum (TELFOR) . Piscataway : IEEE Press , 2022 : 1 - 4 .
CERRO G , FERRIGNO L , LARACCA M , et al . UWB-based indoor localization: how to optimally design the operating setup? [J ] . IEEE Transactions on Instrumentation and Measurement , 2022 , 71 : 9509012 .
VASWANI A , SHAZEER N , PARMAR N , et al . Attention is all you need [C ] // Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017) . New York : Curran Associates , 2017 : 6000 - 6010 .
DOTLIC I , CONNELL A , MA H , et al . Angle of arrival estimation using decawave DW1000 integrated circuits [C ] // Proceedings of the 2017 14th Workshop on Positioning, Navigation and Communications (WPNC) . Piscataway : IEEE Press , 2017 : 1 - 6 .
WANG H C , WANG X X , XUE Y , et al . UWB-based indoor localization using a hybrid WKNN-LSTM algorithm [C ] // Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) . Piscataway : IEEE Press , 2020 : 1720 - 1725 .
WANG Z G , YAN W Z , OATES T . Time series classification from scratch with deep neural networks: a strong baseline [C ] // Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN) . Piscataway : IEEE Press , 2017 : 1578 - 1585 .
0
浏览量
15
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621