浏览全部资源
扫码关注微信
[ "王璐瑶(1996- ),女,山西大同人,东华大学硕士生,主要研究方向为移动边缘计算系统中任务迁移策略和能量管理。" ]
[ "张文倩(1994- ),女,山东济宁人,东华大学博士生,主要研究方向为移动边缘计算系统中任务迁移策略和能量管理。" ]
[ "张光林(1981- ),男,山东东营人,东华大学教授、博士生导师,主要研究方向为车联网、内容中心网络、智能电网、物联网与移动边缘计算。" ]
纸质出版日期:2019-03-30,
网络出版日期:2019-03,
移动端阅览
王璐瑶, 张文倩, 张光林. 多用户移动边缘计算迁移的能量管理研究[J]. 物联网学报, 2019,3(1):73-81.
LUYAO WANG, WENQIAN ZHANG, GUANGLIN ZHANG. Research on energy management of multi-user mobile edge computing offloading. [J]. Chinese journal on internet of things, 2019, 3(1): 73-81.
王璐瑶, 张文倩, 张光林. 多用户移动边缘计算迁移的能量管理研究[J]. 物联网学报, 2019,3(1):73-81. DOI: 10.11959/j.issn.2096-3750.2019.00091.
LUYAO WANG, WENQIAN ZHANG, GUANGLIN ZHANG. Research on energy management of multi-user mobile edge computing offloading. [J]. Chinese journal on internet of things, 2019, 3(1): 73-81. DOI: 10.11959/j.issn.2096-3750.2019.00091.
在移动边缘计算系统中,通过将计算任务从移动设备迁移到移动边缘计算服务器,可以大幅度提高计算质量。考虑将可再生能源纳入多用户移动边缘计算系统中,并在模型中加入电池作为能量收集装置以实现能量收集和存储。通过提出的基于强化学习的资源管理算法制定了移动边缘计算系统中的任务分配策略,实现了移动设备成本最优化(包括时延成本和能耗成本)。仿真结果表明,与其他算法相比,该算法显著减少了移动设备的成本。
In mobile edge computing system
the quality of computing experience can be improved greatly by offloading computing tasks from mobile devices to mobile edge computing servers.Consider incorporating renewable energy into a multi-user mobile edge system.Moreover
a battery as an energy harvesting device was added to the model to harvest energy and storage.The task allocation strategy in mobile edge computing system was formulated through the resource management algorithm based on reinforcement learning
which achieved the cost minimization of mobile devices (including delay cost and computing cost).The simulation results show that the proposed algorithm significantly minimizes the cost of mobile devices compared with other algorithms.
能量收集可再生能源移动边缘计算成本优化强化学习
energy harvestingrenewable energymobile edge computingcost optimizationreinforcement learning
BECK M T, MAIER M . Mobile edge computing:challenges for future virtual network embedding algorithms[J]. The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences, 2014: 65.
VAQUERO L M, RODEROMERINO L . Finding your way in the fog:towards a comprehensive definition of fog computing[J]. ACM Special Interest Group on Data Communication, 2014,44(5): 27-32.
SHI W, CAO J, ZHANG Q ,et al. Edge computing:vision and challenges[J]. IEEE Internet of Things Journal, 2016,3(5): 637-646.
PATEL M, NAUGHTON B, CHAN C ,et al. Mobile edge computing—introductory technical white paper[S]. Mobile-Edge Computer Industry Initiative, 2014.
CHIANG M, ZHANG T . Fog and IoT:an overview of research opportunities[J]. IEEE Internet of Things Journal, 2017,3(6): 854-864.
MAO Y, YOU C, ZHANG J ,et al. Mobile edge computing:survey and research outlook[J]. 2017.
ABBAS N, ZHANG Y, TAHERKORDI A ,et al. Mobile edge computing:a survey[J]. IEEE Internet of Things Journal, 2017(99): 1.
SUDEVALAYAM S, KULKARNI P . Energy harvesting sensor nodes:survey and implications[J]. IEEE Communications Surveys & Tutorials, 2011,13(3): 443-461.
RUAN T, CHEW Z J, ZHU M . Energy-aware approaches for energy harvesting powered wireless sensor nodes[J]. IEEE Sensors Journal, 2017,17(7): 2165-2173.
MAO Y, ZHANG J, LETAIEF K B . Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016,34(12): 3590-3605.
NEELY M . Stochastic network optimization with application to communication and queueing systems[J]. Synthesis Lectures on Communication Networks, 2010,3(1): 211.
ZHANG W, WEN Y, GUAN K ,et al. Energy-optimal mobile cloud computing under stochastic wireless channel[J]. IEEE Transactions on Wireless Communications, 2013,12(9): 4569-4581.
MUÑOZ O, PASCUAL-ISERTE A, VIDAL J . Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading[J]. IEEE Transactions on Vehicular Technology, 2015,64(10): 4738-4755.
CHEN X . Decentralized computation offloading game for mobile cloud computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2015,26(4): 974-983.
HUANG D, WANG P, NIYATO D ,et al. A dynamic offloading algorithm for mobile computing[J]. IEEE Transactions on Wireless Communications, 2012,11(6): 1991-1995.
LIU J, MAO Y, ZHANG J ,et al. Delay-optimal computation task scheduling for mobile-edge computing systems[J]. IEEE International Symposium on Information Theory, 2016: 1451-1455.
JIANG Z, MAO S . Energy delay tradeoff in cloud offloading for multi-core mobile devices[J]. IEEE Access, 2015: 2306-2316.
KWAK J, KIM Y, LEE J ,et al. Dream:dynamic resource and task allocation for energy minimization in mobile cloud systems[J]. IEEE Journal on Selected Areas in Communications, 2015,33(12): 2510-2523.
WATKINS C, DAYAN P . Technical note Q-learning[J]. Machine Learning, 1992: 279-292.
SATYANARAYANAN M, BAHL P, DAVIES N . The case for VM-Based cloudlets in mobile computing[J]. IEEE Pervasive Computing, 2009,8(4): 14-23.
LI C, HU Y, LIU L ,et al. Towards sustainable in-situ server systems in the big data era[C]// ACM/IEEE,International Symposium on Computer Architecture. IEEE, 2015: 14-26.
SUTTON R S, BARTO A G . Reinforcement learning:an introduction[C]// Neural Information Processing Systems. IEEE, 1999.
GUENTER B, JAIN N, WILLIAMS C . Managing cost,performance,and reliability tradeoffs for energy-aware server provisioning[J]. Proceedings-IEEE INFOCOM, 2011,2(3): 1332-1340.
ZHANG Y, SCHAAR M V D . Structure-aware stochastic storage management in smart grids[C]// IEEE INFOCOM 2014-IEEE Conference on Computer Communications. IEEE, 2014: 2643-2651.
0
浏览量
1273
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构