浏览全部资源
扫码关注微信
[ "金驰(1997- ),男,辽宁沈阳人,吉林大学硕士生,主要研究方向为无线体域网和人机交互技术。" ]
[ "李志军(1971- ),男,吉林长春人,吉林大学高级工程师,主要研究方向为无线资源管理技术研究。" ]
[ "孙大洋(1979- ),男,吉林长春人,吉林大学副教授,主要研究方向为无线传感器网络、物联网通信与节能技术、智能终端软件开发。" ]
[ "胡封晔(1974- ),男,河南原阳人,吉林大学教授、博士生导师,主要研究方向为无线体域网、认知无线电、无线能量和信息同传技术、空时通信技术。" ]
纸质出版日期:2019-09-30,
网络出版日期:2019-09,
移动端阅览
金驰, 李志军, 孙大洋, 等. 基于空间特征的无线体域网人体姿态识别算法[J]. 物联网学报, 2019,3(3):70-75.
CHI JIN, ZHIJUN LI, DAYANG SUN, et al. Human activity recognition algorithm based on the spatial feature for WBAN. [J]. Chinese journal on internet of things, 2019, 3(3): 70-75.
金驰, 李志军, 孙大洋, 等. 基于空间特征的无线体域网人体姿态识别算法[J]. 物联网学报, 2019,3(3):70-75. DOI: 10.11959/j.issn.2096-3750.2019.00121.
CHI JIN, ZHIJUN LI, DAYANG SUN, et al. Human activity recognition algorithm based on the spatial feature for WBAN. [J]. Chinese journal on internet of things, 2019, 3(3): 70-75. DOI: 10.11959/j.issn.2096-3750.2019.00121.
针对传统基于图像视频的姿态识别算法中所存在的计算成本高、摄像盲区多、隐私易泄露等问题,提出了一种基于手机加速度与陀螺仪数据的卷积—卷积长短时记忆—注意力(CCLA,convolution-convolutional long short-term memory-attention)人体姿态识别算法。使用卷积神经网络对姿态数据进行空间特征提取,采用卷积长短时记忆网络挖掘数据中隐含的时序信息,模拟人脑选择注意力机制构建Attention(注意力)编码器进行更高层次的时空特征提取,以实现对姿态的精准分类。在加州大学欧文分校提出的基于智能手机的人体活动与转换姿态识别数据集上对CCLA算法进行了测试,实现了对12元姿态的分类识别,识别准确率达93.27%。
Traditional image-based activity recognition algorithms have some problems
such as high computational cost
numerous blind spots and easy privacy leakage.To solve the problem above
the CCLA (convolution-convolutional long short-term memory-attention) activity recognition algorithm based on the acceleration and gyroscope data was proposed.The convolutional neural network was used to extract spatial features of activity data and got the hidden time series information from the convolutional long short-term memory network.Simulating human brain selecting attention mechanism
attention-encoder was constructed to extract the spatial and temporal features at a higher level.The CCLA algorithm was tested on UCI-HAPT (university of California Irvine-smartphone-based recognition of human activities and postural transitions) public data set
and realized the classification of 12 types of activity with the accuracy of 93.27%.
神经网络姿态识别注意力机制无线体域网
neural networkactivity recognitionattention mechanismwireless body area network (WBAN)
VAROL G, LAPTEV I, SCHMID C . Long-term temporal convolutions for action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,40(6): 1510-1517.
HU J F, ZHENG W S, LAI J ,et al. Jointly learning heterogeneous features for RGB-D activity recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(11): 2186-2200.
DONAHUE J, HENDRICKS L A, ROHRBACH M ,et al. Long-term recurrent convolutional networks for visual recognition and description[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,39(4): 677-691
ZHANG L, WU X, LUO D . Human activity recognition with HMM-DNN model[C]// 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI&CC). IEEE, 2015: 192-197.
ANGUITA D, GHIO A, ONETO L ,et al. Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine[C]// International Workshop on Ambient Assisted Living. Springer, 2012: 216-223.
李云鹤 . 智能穿戴设备基于动态模板匹配算法的 3D 手势识别[J]. 物联网学报, 2019,3(1): 97-105.
LI Y H . 3D gesture recognition based on dynamic template matching algorithm for intelligent wearable devices[J]. Chinese Journal on Internet of Things, 2019,3(1): 97-105.
ALSHEIKH M A, SELIM A, NIYATO D ,et al. Deep activity recognition models with triaxial accelerometers[C]// Proceedings of the 23rd ACM International Conference on Multimedia. ACM, 2015: 689-692.
ZENG M, YU T, WANG X ,et al. Semi-supervised convolutional neural networks for human activity recognition[C]// 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017: 522-529.
LEE S M, YOON S M, CHO H . Human activity recognition from accelerometer data using convolutional neural network[C]// 2017 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2017: 131-134.
JIANG W, YIN Z . Human activity recognition using wearable sensors by deep convolutional neural networks[C]// Proceedings of the 23rd ACM International Conference on Multimedia. ACM, 2015: 1307-1310.
YANG J, NGUYEN M N, SAN P P ,et al. Deep convolutional neural networks on multichannel time series for human activity recognition[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. 2015: 3995-4001.
HAMMERLA N Y, HALLORAN S, PLOETZ T . Deep,convolutional,and recurrent models for human activity recognition using wearables[J]. Journal of Scientific Computing, 2016,61(2): 454-476.
SHI X, CHEN Z, WANG H ,et al. Convolutional LSTM network:a machine learning approach for precipitation nowcasting[C]// Advances in Neural Information Processing Systems. 2015: 802-810.
TAO D, WEN Y, HONG R . Multicolumn bidirectional long short-term memory for mobile devices-based human activity recognition[J]. IEEE Internet of Things Journal, 2016,3(6): 1124-1134.
ORDÓÑEZ F, ROGGEN D . Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition[J]. Sensors, 2016,16(1): 115-140.
RUSH A M, CHOPRA S, WESTON J . A neural attention model for abstractive sentence summarization[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015: 379-389.
LAI J L, YI Y . Key frame extraction based on visual attention model[J]. Journal of Visual Communication and Image Representation, 2012,23(1): 114-125.
RAFFEL C, ELLIS D P W . Feed-forward networks with attention can solve some long-term memory problems[J]. arXiv, 2016: 1-6.
REYES-ORTIZ J L, ONETO L, SAMÀ A ,et al. Transition-aware human activity recognition using smartphones[J]. Neurocomputing, 2016,171: 754-767.
0
浏览量
759
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构