浏览全部资源
扫码关注微信
1. 滑铁卢大学,加拿大 滑铁卢 N2L 3G1
2. 西安电子科技大学,陕西 西安 710071
3. 南京大学,江苏 南京 210023
4. 中南大学,湖南 长沙 410083
5. 北京交通大学,北京 100044
[ "沈学民(1958- ),男,博士,中国工程院外籍院士,加拿大工程院、工程研究院院士以及皇家学会会士,加拿大滑铁卢大学教授,IEEE Fellow。主要研究方向为空天地一体化网络、车联网、网络安全、人工智能及智能电网等。现为IEEE通信学会副主席、Peer-to-Peer Networking and Applications主编,曾担任IEEE Internet of Things Journal主编、IEEE Board of Governor 成员、IEEE Distinguished Lecturers Selection Committee主席等职务。曾担任多个国际会议的TPC主席/合作主席,包括IEEE GLOBECOM 2016、INFOCOM 2014、VTC-Fall 2010等" ]
[ "承楠(1987- ),男,博士,西安电子科技大学教授、博士生导师,主要研究方向为空天地一体化网络、车联网、未来无线网络、人工智能等。参与多项国家重点课题,包括国家自然科学基金资助项目、国家863课题等。现担任国际期刊 Peer-to-Peer Networking and Applications 以及 IEEE Open Journal of Vehicular Technology编委,现/曾担任多个国际会议程序委员会成员" ]
[ "周海波(1985- ),男,博士,南京大学副教授、博士生导师、特聘研究员,主要研究方向为异构无线网络融合与跨学科创新。现担任 IEEE Internet of Things Journal、IEEE Network Magazine、IEEE Wireless Communications Letters 3本国际期刊的编委以及多个国际重要会议技术程序委员会委员,目前是IEEE高级会员和中国电子学会高级会员" ]
[ "吕丰(1990- ),男,博士,中南大学特聘教授,主要研究方向为车联网(物联网)、大数据科学与工程、移动网络计算、空天地一体化网络。以技术骨干身份参与多项国家重点基金资助项目与课题,包括国家自然科学基金资助项目、国家863课题、国家科技部重点研发计划等。现/曾担任多个国际会议程序委员会成员及十余个 SCI 期刊审稿人,目前是 IEEE/ACM 会员和中国通信学会高级会员" ]
[ "权伟(1987- ),男,博士,北京交通大学副教授、博士生导师,主要研究方向为未来网络体系与传输理论、智慧车联网等。现担任IEEE Access、IET Networks、Peer-to-Peer Networking and Applications 3 本国际期刊的编委以及多个国际重要会议技术程序委员会委员,目前是中国通信学会高级会员、中国人工智能学会高级会员" ]
[ "时伟森(1991- ),男,博士,华为技术有限公司加拿大研究中心研发工程师,主要研究方向为空天地一体化通信网络、无人机轨迹规划、组网通信、未来无线接入网资源分配等" ]
[ "吴华清(1992-),女,加拿大滑铁卢大学博士生,主要研究方向为车联网、边缘缓存、资源管理和空天地一体化网络等" ]
[ "周淙浩(1994- ),男,加拿大滑铁卢大学博士生,主要研究方向为空天地一体化网络和机器学习在无线网络中的应用" ]
纸质出版日期:2020-09-30,
网络出版日期:2020-09,
移动端阅览
沈学民, 承楠, 周海波, 等. 空天地一体化网络技术:探索与展望[J]. 物联网学报, 2020,4(3):3-19.
XUEMIN(SHERMAN) SHEN, NAN CHENG, HAIBO ZHOU, et al. Space-air-ground integrated networks:review and prospect. [J]. Chinese journal on internet of things, 2020, 4(3): 3-19.
沈学民, 承楠, 周海波, 等. 空天地一体化网络技术:探索与展望[J]. 物联网学报, 2020,4(3):3-19. DOI: 10.11959/j.issn.2096-3750.2020.00142.
XUEMIN(SHERMAN) SHEN, NAN CHENG, HAIBO ZHOU, et al. Space-air-ground integrated networks:review and prospect. [J]. Chinese journal on internet of things, 2020, 4(3): 3-19. DOI: 10.11959/j.issn.2096-3750.2020.00142.
随着信息技术的不断发展,信息服务的空间范畴不断扩大,各种天基、空基、海基、地基网络服务不断涌现,对多维综合信息资源的需求也逐步提升。空天地一体化网络可以为陆海空天用户提供无缝信息服务,满足未来网络对全时全域全空通信和网络互联互通的需求。首先,对空天地一体化网络技术及协议体系的发展趋势进行了分析,探讨了低轨卫星通信系统以及空地网络融合的研究进展。针对网络结构复杂、动态性高、资源高度约束等问题,提出了基于强化学习(RL
reinforcement learning)的空天地一体化网络设计与优化框架,以进行高效快速的网络设计、分析、优化与管控。同时给出了实例分析,阐明了利用深度强化学习(DRL
deep RL)进行空天地一体化网络智能接入选择的方法。并通过搭建空天地一体化网络仿真平台,解决了网络观测稀疏与训练数据难以获取的问题,极大地提升了RL的训练效率。最后,对空天地一体化网络中的潜在研究方向进行了探讨。
With the advance of the information technologies
the scale of the information services gradually expands
from ground services
to aerial
maritime
and spatial services
with the soaring requirements on multi-dimensional comprehensive information resources.The space-air-ground integrated networks (SAGINs) are envisioned to provide seamless network services to spatial
aerial
maritime
and ground users
satisfying the future network requirements on all-time
all-domain
and all-space communications and interconnected networking.Firstly
we reviewed the current research development of SAGINs
discussing the research trends on the low-earth orbiting (LEO) satellite constellation and space-ground network integration.Then
the reinforcement learning (RL) framework was proposed in SAGINs to address the problems of complex architecture
high dynamics
and resource constraints in SAGINs
which facilitated efficient and fast network design
analysis
optimization
and management.As a case study
the method of applying deep RL (DRL) was showed for the intelligent access network selection in SAGINs.To improve the RL training efficiency
a comprehensive SAGINs simulation platform was established
through which the agent-environments interaction was accelerated and training samples could be obtained more cost-effectively.Finally
some open research directions were presented.
空天地一体化网络强化学习低轨卫星星座仿真平台车联网
space-air-ground integrated networkreinforcement learningLEO constellationsimulation platformInternet of vehicles
3GPP.Study on New Radio (NR) to support non-terrestrial networks:TR 38.811 V15.2.0[S]. 2019.
科塔学术.天地一体化信息网络重大工程立项建议[EB/OL].
CHEN M Z, CHALLITA U, SAAD W ,et al. Artificial neural networks-based machine learning for wireless networks:a tutorial[J]. arXiv:1710.02913, 2017
LIOLIS K, SCHLUETER G, KRAUSE J ,et al. Cognitive radio scenarios for satellite communications:the CoRaSat approach[C]// 2013 Future Network and Mobile Summit. IEEE, 2013: 1-10.
European Union. SANSA[EB/OL]. 20152015.
European Union. VIrtualized hybrid satellite-TerrestriAl systems for resilient and flexible future networks[EB/OL]. 20172017.
European Space Agency. SATNEX IV[EB/OL]. 20172017.
European Union. SaT5G[EB/OL]. 20172017.
SATis5 Consortium. SATis5 Consortium.SATis5[EB/OL]. 20182018.
KOTA S, GIAMBENE G, KIM S . Satellite component of NGN:integrated and hybrid networks[J]. International Journal of Satellite Communications and Networking, 2011,29(3): 191-208.
WANG Y, XU Y C, ZHANG Y ,et al. Hybrid satellite-aerial-terrestrial networks in emergency scenarios:a survey[J]. China Communications, 2017,14(7): 1-13.
ZHANG N, ZHANG S, YANG P ,et al. Software defined space-airground integrated vehicular networks:challenges and solutions[J]. IEEE Communications Magazine, 2017,55(7): 101-109.
CHENG N, QUAN W, SHI W S ,et al. A comprehensive simulation platform for space-air-ground integrated network[J]. IEEE Wireless Communications, 2020,27(1): 178-185.
WANG P, ZHANG J X, ZHANG X ,et al. Convergence of satellite and terrestrial networks:a comprehensive survey[J]. IEEE Access, 2020,8: 5550-5588.
3GPP.Study on scenarios and requirements for next generation access technologies:TR 38.913 V15.0.0[S]. 2018.
3GPP.Service requirements for the 5G system:TS 22.261 V17.2.0[S]. 2020.
3GPP.Study on new services and markets technology enablers:TR 22.891 V14.2.0[S]. 2016.
3GPP.Study on architecture for next generation system:TR 23.799 V14.0.0[S]. 2016.
3GPP.Study on using satellite access in 5G:TR 22.822 V16.0.0[S]. 2018.
ETSI.Satellite earth stations and systems (SES); combined satellite and terrestrial networks scenarios:TR 103 124 V1.1.1[S]. 2013.
ETSI.Satellite earth stations and systems (SES); overview of present satellite emergency communications resources:TR 102 641 V1.2.2[S]. 2013.
ETSI.System reference document (SRdoc); cognitive radio techniques for satellite communications operating in Ka band:TR 103 263 V1.2.1[S]. 2016.
ETSI.Satellite earth stations and systems (SES); multi-link routing scheme in hybrid access network with heterogeneous links:TR 103 351 V1.1.1[S]. 2017.
ETSI.Broadband radio access networks (BRAN); broadband wireless access and backhauling for remote rural communities:TR 103 293 V1.1.1[S]. 2015.
ETSI.Satellite earth stations and systems (SES); broadband satellite multimedia (BSM); common air interface specification; satellite independent service access point (SI-SAP) interface:primitives:TS 102 357 V1.2.1[S]. 2015.
ECC Report 280.Satellite solutions for 5G[EB/OL]. 20182018.
ETSI, CENELEC, EBU, et al. DVB Specifications[EB/OL]. 20192019.
CCSDS. Blue books:recommended standards[EB/OL]. 20192019.
SUTTON R, BARTO A . Reinforcement learning:an introduction[M]. London: The MIT PressPress, 1998.
SILVER D, SCHRITTWIESER J, SIMONYAN K ,et al. Mastering the game of Go without human knowledge[J]. Nature, 2017,550(7676): 354-359.
LUONG N, HOANG D, GONG S ,et al. Applications of deep reinforcement learning in communications and networking:a survey[J]. IEEE Communications Surveys & Tutorials, 2019,21(4): 3133-3174.
LIU J J, SHI Y P, FADLULLAH Z M ,et al. Space-air-ground integrated network:a survey[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 2714-2741.
KATO N, FADLULLAH Z M, TANG F X ,et al. Optimizing space-airground integrated networks by artificial intelligence[J]. IEEE Wireless Communications, 2019,26(4): 140-147.
FOERSTER J, NARDELLI N, FARQUHAR G ,et al. Stabilising experience replay for deep multi-agent reinforcement learning[C]// International Conference on Machine Learning. 2017: 1146-1155.
KULKARNI T D, NARASIMHAN K R, SAEEDI A ,et al. Hierarchical deep reinforcement learning:integrating temporal abstraction and intrinsic motivation[C]// Conference and Workshop on Neural Information Processing Systems. 2016: 3675-3683.
YIN S X, ZHAO S, ZHAO Y F ,et al. Intelligent trajectory design in UAV-aided communications with reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2019,68(8): 8227-8231.
HU J Z, ZHANG H L, SONG L Y . Reinforcement learning for decentralized trajectory design in cellular UAV networks with sense-andsend protocol[J]. IEEE Internet of Things Journal, 2019,6(4): 6177-6189.
CHEN M T, ZHANG Y, TENG Y L ,et al. Reinforcement learning based signal quality aware handover scheme for LEO satellite communication networks[C]// International Conference on Human Centered Computing. Springer, 2019: 44-55.
LIU S J, HU X, WANG W D . Deep reinforcement learning based dynamic channel allocation algorithm in multibeam satellite systems[J]. IEEE Access, 2018,6: 15733-15742.
FERREIRA P V R, PAFFENROTH R, WYGLINSKI A M ,et al. Multi-objective reinforcement learning for cognitive satellite communications using deep neural network ensembles[J]. IEEE Journal on Selected Areas in Communications, 2018,36(5): 1030-1041.
CHEN M Z, SAAD W, YIN C C ,et al. Data correlation-aware resource management in wireless virtual reality (VR):an echo state transfer learning approach[J]. IEEE Transactions on Communications, 2019,67(6): 4267-4280.
FU S, GAO J, ZHAO L . Integrated resource management for terrestrial-satellite systems[J]. IEEE Transactions on Vehicular Technology, 2020,69(3): 3256-3266.
CAO Y, ZHANG L, LIANG Y C . Deep reinforcement learning for multi-user access control in UAV networks[C]// 2019 IEEE International Conference on Communications (ICC). IEEE, 2019: 1-6.
HU J Z, ZHANG H L, SONG L Y ,et al. Reinforcement learning for a cellular Internet of UAVs:protocol design,trajectory control,and resource management[J]. IEEE Wireless Communications, 2020,27(1): 116-123.
CHENG N, LYU F, QUAN W ,et al. Space/aerial-assisted computing offloading for IoT applications:a learning-based approach[J]. IEEE Journal on Selected Areas in Communications, 2019,37(5): 1117-1129.
CHEN M Z, SAAD W, YIN C C . Echo-liquid state deep learning for 360° content transmission and caching in wireless VR networks with cellular-connected UAVs[J]. IEEE Transactions on Communications, 2019,67(9): 6386-6400.
赵亚军, 郁光辉, 徐汉青 . 6G移动通信网络:愿景、挑战与关键技术[J]. 中国科学:信息科学, 2019: 963-987.
ZHAO Y J, YU G H, XU H Q . 6G mobile communication network:vision,challenges and key technologies[J]. Scientia Sinica (Informationis), 2019: 963-987.
PAPA A, DECOLA T, VIZARRETA P ,et al. Dynamic SDN controller placement in a LEO constellation satellite network[C]// 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 2018: 206-212.
AHMED T, ALLEG A, FERRUS R ,et al. On-demand network slicing using SDN/NFV-enabled satellite ground segment systems[C]// 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft). IEEE, 2018: 242-246.
KU H J, JUNG J H, KWON G I . A study on reinforcement learning based SFC path selection in SDN/NFV[J]. International Journal of Applied Engineering Research, 2017,12(12): 3439-3443.
XIAO Y, ZHANG Q, LIU F ,et al. NFVdeep:adaptive online service function chain deployment with deep reinforcement learning[C]// The International Symposium on Computer Science,Computer Engineering and Educational Technology. 2019: 1-10.
FOONG K C, . Mobility management for satellite/terrestrial multi-service convergence networks[C]// 2009 International Conference on Communication Software and Networks. IEEE, 2009: 362-366.
RUIZ DE AZUA J A, CALVERAS A, CAMPS A . Internet of satellites (IoSat):analysis of network models and routing protocol requirements[J]. IEEE Access, 2018,6: 20390-20411.
0
浏览量
3723
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构