浏览全部资源
扫码关注微信
1. 上海交通大学自动化系,上海 200240
2. 系统控制与信息处理教育部重点实验室,上海 200240
[ "周鹏(1995- ),男,安徽合肥人,上海交通大学硕士生,主要研究方向为工业物联网中的网络与计算优化" ]
[ "徐金城(1996- ),男,江苏盐城人,上海交通大学硕士生,主要研究方向为工业物联网中的边缘计算、任务卸载和软件定义网络技术" ]
[ "杨博(1980- ),男,上海人,上海交通大学教授、博士生导师,主要研究方向为物联网和能源互联网" ]
纸质出版日期:2020-06-30,
网络出版日期:2020-06,
移动端阅览
周鹏, 徐金城, 杨博. 工业物联网中基于边缘计算的跨域计算资源分配与任务卸载[J]. 物联网学报, 2020,4(2):96-104.
PENG ZHOU, JINCHENG XU, BO YANG. Cross-domain task offloading and computing resource allocation for edge computation in industrial Internet of things. [J]. Chinese journal on internet of things, 2020, 4(2): 96-104.
周鹏, 徐金城, 杨博. 工业物联网中基于边缘计算的跨域计算资源分配与任务卸载[J]. 物联网学报, 2020,4(2):96-104. DOI: 10.11959/j.issn.2096-3750.2020.00143.
PENG ZHOU, JINCHENG XU, BO YANG. Cross-domain task offloading and computing resource allocation for edge computation in industrial Internet of things. [J]. Chinese journal on internet of things, 2020, 4(2): 96-104. DOI: 10.11959/j.issn.2096-3750.2020.00143.
在工业物联网中,现场设备的计算能力有限,基于边缘计算的任务卸载可以有效缓解现场设备的计算压力,提供低时延计算服务。此外,由于网络中不同区域的边缘服务器负载不同,需要合理安排任务卸载以及分配边缘服务器计算资源,从而降低任务完成时延,实现负载均衡。因此,研究了工业物联网中基于边缘计算的任务卸载和资源分配,提出了一种工业物联网中计算任务跨域卸载模型,并构建了一个最小化任务完成时间的混合整数非线性优化问题。将该问题分解为资源分配与任务卸载两个子问题,基于两个子问题特征,通过迭代交替求解,得到资源分配最优解与任务卸载策略。实验结果表明,与不跨域方法相比,所提方法有效地减轻了边缘服务器的负载不均衡,减少了任务完成时延。
In the industrial Internet of things
limited by the computing capacity of field devices
the task offloading based on edge computing can effectively alleviate the computing burden of field devices and provide low-latency computing services.Moreover
because the load of edge servers are different in different areas of the network
it is necessary to reasonably arrange task offloading and allocate computing resources of edge servers
thereby reducing task completion delay and achieving load balance.Thus
the task offloading and resource allocation for edge computing in the industrial Internet of things was studied
a cross-domain offloading model for computing tasks in the industrial Internet of things was proposed
and a mixed integer nonlinear optimization problem that minimizes task completion time was formulated.The problem was decomposed it into two sub-problems of resource allocation and task offloading
based on the characteristics of the two sub-problems
the optimal solution of resource allocation and task offloading strategy were obtained through iterative and alternating solution.The experimental results show that compared with the non-cross-domain strategy
the load imbalance of the edge server and the task completion delay are reduced effectively by the proposed strategy.
工业物联网资源分配任务卸载跨域
industrial Internet of thingsresource allocationtask offloadingcross-domain
邬贺铨 . 物联网技术与应用的新进展[J]. 物联网学报, 2017,1(1): 1-6.
WU H Q . Technology and application progress on Internet of things[J]. Chinese Journal on Internet of Things, 2017,1(1): 1-6.
EMILIANO S, ABUSAYEED S, SONG H ,et al. Industrial Internet of things:challenges,opportunities,and directions[J]. IEEE Transactions on Industrial Informatics, 2018,14(11): 4724-4734.
YANG C W, HUANG Q Y, LI Z L ,et al. Big data and cloud computing:innovation opportunities and challenges[J]. International Journal of Digital Earth, 2017,10(1): 13-53.
李林哲, 周佩雷, 程鹏 ,等. 边缘计算的架构、挑战与应用[J]. 大数据, 2019,5(2): 3-16.
LI L Z, ZHOU P L, CHENG P ,et al. Architecture,challenges and applications of edge computing[J]. Big Data Research, 2019,5(2): 3-16.
YU W, LIANG F, HE X ,et al. A survey on the edge computing for the Internet of things[J]. IEEE Access, 2017,6: 6900-6919.
KAUR K, GARG S, AUJLA G S ,et al. Edge computing in the industrial Internet of things environment:software-defined-networks-based edge-cloud interplay[J]. IEEE Communications Magazine, 2018,56(2): 44-51.
HONG Z C, CHEN W H, HUANG H W ,et al. Multi-hop cooperative computation offloading for industrial IoT-edge-cloud computing environments[J]. IEEE Transactions on Parallel and Distributed Systems, 2019,30(12): 2759-2774.
YU Y, BU X Y, YANG K ,et al. Green large-scale fog computing resource allocation using joint benders decomposition,dinkelbach algorithm,ADMM,and branch-and-bound[J]. IEEE Internet of Things Journal, 2019,6(3): 4106-4117.
LI X M, WAN J F, DAI H N ,et al. A hybrid computing solution and resource scheduling strategy for edge computing in smart manufacturing[J]. IEEE Transactions on Industrial Informatics, 2019,15(7): 4225-4234.
MASOUDI R, GHAFFARI A . Software defined networks:a survey[J]. Journal of Network and Computer Applications, 2016,67: 1-25.
ZHANG J, FENG X, LIU Z . A grid-based clustering algorithm via load analysis for industrial Internet of things[J]. IEEE Access, 2018,6: 13117-13128.
SONG L M, CHAI K K, CHEN Y ,et al. QoS-aware energy-efficient cooperative scheme for cluster-based IoT systems[J]. IEEE Systems Journal, 2017,11(3): 1447-1455.
PARDALOS P M . Convex optimization theory[M]. Massachusetts: Athena ScientificPress, 2011.
BREMER K . Branch support and tree stability[J]. Cladistics, 1994,10(3): 295-304.
YAN W, XIE K G . Simulated annealing algorithm[J]. Journal of Mengzi Teathers College, 1999,3(1): 95-98.
0
浏览量
1127
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构