浏览全部资源
扫码关注微信
1. 中国石油天然气股份有限公司北京油气调控中心,北京 100007
2. 北京中油瑞飞信息技术有限责任公司,北京 100007
[ "于涛(1982- ),男,山东青岛人,博士,中国石油天然气股份有限公司北京油气调控中心高级工程师,主要研究方向为长输油气管道调控运行管理、数据挖掘分析与应用等" ]
[ "刘丽君(1982- ),女,山东烟台人,北京中油瑞飞信息技术有限责任公司工程师,主要研究方向为长输油气管道信息化、智能化建设" ]
[ "陈泓君(1989- ),女,山东菏泽人,中国石油天然气股份有限公司北京油气调控中心工程师,主要研究方向为长输油气管道调控运行管理、数据分析" ]
[ "于瑶(1989- ),女,吉林松原人,中国石油天然气股份有限公司北京油气调控中心工程师,主要研究方向为长输油气管道安全监控" ]
纸质出版日期:2020-09-30,
网络出版日期:2020-09,
移动端阅览
于涛, 刘丽君, 陈泓君, 等. 长输油气管道大数据挖掘与应用[J]. 物联网学报, 2020,4(3):112-119.
TAO YU, LIJUN LIU, HONGJUN CHEN, et al. Big data mining and application of long-distance oil and gas pipeline. [J]. Chinese journal on internet of things, 2020, 4(3): 112-119.
于涛, 刘丽君, 陈泓君, 等. 长输油气管道大数据挖掘与应用[J]. 物联网学报, 2020,4(3):112-119. DOI: 10.11959/j.issn.2096-3750.2020.00174.
TAO YU, LIJUN LIU, HONGJUN CHEN, et al. Big data mining and application of long-distance oil and gas pipeline. [J]. Chinese journal on internet of things, 2020, 4(3): 112-119. DOI: 10.11959/j.issn.2096-3750.2020.00174.
针对未来长输油气管道智能化建设的需要,结合油气管道数据采集与监视控制(SCADA
supervisory control and data acquisition)系统及运行参数,对比传统理论方法和大数据挖掘方法的特点,提出了大数据推动管道智能化的研究方向以及管道智能化研究的数字信息化、理论化和智能化3个步骤,建立了管道智能化架构,包括物理层、数据层、数据挖掘层、应用层和用户层共5个层次,并确定以数据挖掘层为架构核心。统计分析、时序性预测和工况识别等应用案例表明,利用大数据挖掘可有效解决实际生产的业务需求,指导未来管道智能化的研究与建设。
In response to the need of the intelligent construction of the long-distance oil and gas pipeline in the future
combining with the supervisory control and data acquisition (SCADA) system and operating parameters of the oil and gas pipeline
comparing with the characteristics of traditional theoretical methods and big data mining methods
the direction of big data to promote intelligent pipeline and three steps of digital informatization
theorization
and intelligence of the pipeline intelligence research were proposed.The pipeline intelligent architecture was established
which included a physical layer
a data layer
a data mining layer
an application layer
and a user layer.The data mining layer was the core of the architecture.The statistical analysis
time series prediction and working condition identification and other application cases showed that the use of the big data mining could effectively solve the actual production business needs and guide the future pipeline intelligent research and construction.
长输油气管道大数据智能化
long-distance oil and gas pipelinebig dataintelligent
吴军 . 智能时代[M]. 北京: 中信出版社, 2016.
WU J . The age of intelligence[M]. Beijing: CITIC Press GroupPress, 2016.
李姐, 倪军, 王安正 . 从大数据到智能制造[M]. 上海: 上海交通大学出版社, 2016.
LI J, NI J, WANG A Z . From big data to intelligent manufacturing[M]. Shanghai: Shanghai Jiao Tong University PressPress, 2016.
唐大为, 朱静 . 智能化管道数据采集系统设计思路初探[J]. 价值工程, 2015(5): 220-222.
TANG D W, ZHU J . Design thought of intelligence pipeline data acquisition system[J]. Value Engineering, 2015(5): 220-222.
徐善丹 . 关于智能化与数字化长输管道的探讨[J]. 广东化工, 2015,41(11): 121-122.
XU S D . A discussion about digital and intelligent pipeline[J]. Guangdong Chemical Industry, 2015,41(11): 121-122.
于达, 熊毅, 朱婷婷 ,等. 输油气管道智能化事故应急体系建设[J]. 油气储运, 2015,34(10): 1038-1042.
YU D, XIONG Y, ZHU T T ,et al. An intelligent emergency response system for failure of oil and gas pipeline[J]. Oil & Gas Storage and Transportation, 2015,34(10): 1038-1042.
李杰 . 工业大数据[M]. 北京: 机械工业出版社, 2017.
LI J . Industrial big data[M]. Beijing: China Machine PressPress, 2017.
谭伟业 . 浅谈管道数字化与智能化[J]. 中国管理信息化, 2014,17(18): 45-48.
TAN W Y . Discussion on pipeline digitization and intellectualization[J]. China Management Informationization, 2014,17(18): 45-48.
杨筱蘅 . 输油管道设计与管理[M]. 东营: 中国石油大学出版社, 2006.
YANG X H . Design and management of oil pipeline[M]. Dongying: China University of Petroleum PressPress, 2006.
王海琴 . 含蜡原油热输管道沿程温降计算[J]. 油气储运, 2002,21(7): 9-12.
WANG H Q . Calculation and analysis of temperature drop along buried hot waxy oil pipeline[J]. Oil & Gas Storage and Transportation, 2002,21(7): 9-12.
张争伟, 凌霄, 宇波 ,等. 埋地热油管道正常运行的数值模拟研究[J]. 工程热物理学报, 2008,29(8): 1389-1392.
ZHANG Z W, LING X, YU B ,et al. Numerical simulation study on normal operation of buried hot oil pipeline[J]. Journal of Engineering Thermophysics, 2008,29(8): 1389-1392.
YU B, LI C, ZHANG Z ,et al. Numerical simulation of a buried hot crude oil pipeline under normal operation[J]. Applied Thermal Engineering, 2008,30(17): 2670-2679.
张钟俊, 蔡自兴 . 智能控制与智能控制系统[J]. 信息与控制, 1989(5): 30-39.
ZHANG Z J, CAI Z X . Intelligent control and intelligent control system[J]. Information and Control, 1989(5): 30-39.
HAN J W, MICHELINE K, JIAN P . 数据挖掘概念与技术[M]. 北京: 机械工业出版社, 2015.
HAN J W, MICHELINE K, JIAN P . Concept and technology of data mining[M]. Beijing: China Machine PressPress, 2015.
杨静 . 国内外智能化控制系统发展态势的研究[J]. 装备机械, 2016(1): 59-64.
YANG J . Research on development trend of intelligent control system at home and abroad[J]. Equipment Machinery, 2016(1): 59-64.
吴潜 . 大数据背景下石化工业实现智能制造的思考[J]. 化学工业, 2016,34(2): 15-18.
WU Q . Big data utilization aiming at smarter manufacturing of petrochemical industry[J]. Chemical Industry, 2016,34(2): 15-18.
贾永英, 刘扬, 王玉洁 ,等. 非牛顿原油层流埋地热油管道沿线温度的确定[J]. 大庆石油学院学报, 2006,30(6): 51-52.
JIA Y Y, LIU Y, WANG Y J ,et al. Temperature determination of laminar of non-Newtonian crude oil in buried pipelines[J]. Journal of Daqing Petroleum Institute, 2006,30(6): 51-52.
YU B, LI C, ZHANG Z ,et al. Numerical simulation of a buried hot crude oil pipeline under normal operation[J]. Applied Thermal Engineering, 2008,30(17): 2670-2679.
胡新辰 . 基于 LSTM 的语义关系分类研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
HU X C . Research on semantic relation classification based on LSTM[D]. Harbin:Harbin Institute of Technology, 2015.
ZHAO F, FENG J S, ZHAO J ,et al. Robust LSTM-autoencoders for face de-occlusion in the wild[J]. IEEE Transactions on Image Processing, 2018,27(2): 778-790.
GERS F A . Learning to forget:continual prediction with LSTM[J]. Neural Computation, 2000,12(10): 2451-2471.
CHUNG E, PARK J G . Sentence-chain based seq2seq model for corpus expansion[J]. ETRI Journal, 2017,39(4): 455-466.
乔丽 . 基于 CNN 的工件缺陷检测方法研究及系统设计[D]. 武汉:华中师范大学, 2016.
QIAO L . Research and system design of workpiece defect detection method based on CNN[D]. Wuhan:Central China Normal University, 2016.
李鹏辉 . 基于深度学习的油井功图智能识别[D]. 洛阳:河南科技大学, 2015.
LI P H . Intelligent recognition of oil well power diagram based on deep learning[D]. Luoyang:Henan University of Science and Technology, 2015.
0
浏览量
398
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构