浏览全部资源
扫码关注微信
[ "董伟(1995- ),男,安徽合肥人,上海海事大学硕士生,主要研究方向为注意力机制、海事交通大数据分析" ]
[ "张磊磊(1996- ),男,山西交城人,上海海事大学硕士生,主要研究方向为图卷积神经网络、海事交通大数据分析" ]
[ "金子恒(1997- ),男,上海人,上海海事大学硕士生,主要研究方向为深度学习、时序数据分析" ]
[ "孙伟(1978- ),男,黑龙江哈尔滨人,博士,上海海事大学副教授,主要研究方向为智能感知与优化、海事交通大数据分析等" ]
[ "高俊波(1972- ),男,安徽马鞍山人,博士,上海海事大学副教授,主要研究方向为人工智能、情感倾向分析、机会发现等" ]
纸质出版日期:2020-09-30,
网络出版日期:2020-09,
移动端阅览
董伟, 张磊磊, 金子恒, 等. 基于多特征时空图卷积网络的水运通航密度预测[J]. 物联网学报, 2020,4(3):78-85.
WEI DONG, LEILEI ZHANG, ZIHENG JIN, et al. Prediction of the waterborne navigation density based on the multi-feature spatio-temporal graph convolution network. [J]. Chinese journal on internet of things, 2020, 4(3): 78-85.
董伟, 张磊磊, 金子恒, 等. 基于多特征时空图卷积网络的水运通航密度预测[J]. 物联网学报, 2020,4(3):78-85. DOI: 10.11959/j.issn.2096-3750.2020.00176.
WEI DONG, LEILEI ZHANG, ZIHENG JIN, et al. Prediction of the waterborne navigation density based on the multi-feature spatio-temporal graph convolution network. [J]. Chinese journal on internet of things, 2020, 4(3): 78-85. DOI: 10.11959/j.issn.2096-3750.2020.00176.
面对港航信息化发展的需求,物联网技术助力我国水运交通感知网络的建设。水运交通大数据分析已成为交通领域研究者和实践者关注的热点。在水运交通中,各港口的通航密度具有非线性、时空相关性和异质性,对其进行精准预测将面临巨大的挑战。提出一种基于多特征时空图卷积网络(MFSTGCN
multi-feature spatio-temporal graph convolution network)的预测方法,解决了水运交通中通航密度的预测问题。MFSTGCN方法从通航量、船舶平均航速和船舶密度3个特征出发,利用空间维图卷积和时间维卷积操作有效捕获通航密度的时空相关性。在某航运平台采集的长江港口船舶自动识别系统(AIS
automatic identification system)数据集上进行实验,结果表明,MFSTGCN 方法的预测效果优于时空图卷积网络(STGCN
spatio-temporal graph convolution network)方法的预测效果。
In the face of the development of the information technology in the port and waterway
the Internet of things (IoT) technology can help to build China’s water transport perception network.The big data analysis of the waterborne transport has become a hot topic for researchers and practitioners in the field of transportation.The navigation density of each port in the water transportation is nonlinear and spatio-temporal correlation
so it is a great challenge to accurately predict it.A multi-feature spatiotemporal graph convolution network (MFSTGCN) was proposed to solve the problem of the traffic density prediction.MFSTGCN effectively captured the spatial-temporal correlation of the ship navigation density data by using the spatial convolution and temporal convolution through three features
which were navigation volume
average ship speed and ship density.The experiment was carried out on the automatic identification system (AIS) data set collected from a shipping platform.The results show that the prediction effect of the MFSTGCN model is better than the spatio-temporal graph convolution network (STGCN) model.
水运交通通航密度时空相关性图卷积网络多特征
waterborne trafficnavigation densityspatio-temporal correlationgraph convolution networkmultiple feature
董耀华, 孙伟, 董丽华 ,等. 我国内河“船联网”建设研究[J]. 水运工程, 2012(8): 145-149.
DONG Y H, SUN W, DONG L H ,et al. On construction of Internet of ships[J]. Water Transport Engineering, 2012(8): 145-149.
WILLIAMS B M, HOEL L A . Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003,129(6): 664-672.
VAN L H, VAN H C . Short-term traffic and travel time prediction models[J]. Transportation Research E-circular, 2012,22(1): 22-41.
JEONG Y S, BYON Y J, CASTRO-NETO M M ,et al. Supervised weighting-online learning algorithm for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2013,14(4): 1700-1707.
MA X L, TAO Z M, WANG Y H ,et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C:Emerging Technologies, 2015,54: 187-197.
MA X L, DAI Z, HE Z B ,et al. Learning traffic as images:a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017,17(4):818.
LIU Y P, ZHENG H F, FENG X X ,et al. Short-term traffic flow prediction with Conv-LSTM[C]// 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2017: 23-31.
YAO H X, TANG X F, WEI H ,et al. Revisiting spatial-temporal similarity:a deep learning framework for traffic prediction[C]// The AAAI Conference on Artificial Intelligence, 201933 5668-5675.
LI Y G, YU R, SHAHABI C ,et al. Diffusion convolutional recurrent neural network:data-driven traffic forecasting[C]// International Conference on Learning Representations. 2018.
GENG X, LI Y G, WANG L Y ,et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C]// The AAAI Conference on Artificial Intelligence. 2019,33 3656-3663.
ZHAO L, SONG Y J, ZHANG C ,et al. T-GCN:a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019: 1-11.
WU T L, CHEN F, WAN Y . Graph attention LSTM network:a new model for traffic flow forecasting[C]// 2018 5th International Conference on Information Science and Control Engineering (ICISCE). IEEE, 2018: 241-245.
邓烜堃, 万良, 丁红卫 ,等. 基于深度学习的交通流量预测研究[J]. 计算机工程与应用, 2019,55(2): 234-241.
DENG X K, WAN L, DING H W ,et al. Research on traffic flow prediction based on deep learning[J]. Computer Engineering and Applications, 2019,55(2): 234-241.
YU H Y, WU Z H, WANG S Q ,et al. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks[J]. Sensors, 2017,17(7):1501.
YU B, YIN H T, ZHU Z X . Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[J]. Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), 2018: 297-322.
冯宁, 郭晟楠, 宋超 ,等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019,30(3): 759-769.
FENG N, GUO S N, SONG C ,et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019,30(3): 759-769.
GUO S N, LIN Y F, FENG N ,et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]// The AAAI Conference on Artificial Intelligence. 201933: 922-929.
SONG C, LIN Y F, GUO S N ,et al. Spatial-temporal synchronous graph convolutional networks:a new framework for spatial-temporal network data forecasting[C]// The AAAI Conference on Artificial Intelligence. 202034(1): 914-921.
DIAO Z L, WANG X, ZHANG D F ,et al. Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting[C]// The AAAI Conference on Artificial Intelligence. 201933: 890-897.
0
浏览量
498
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构