浏览全部资源
扫码关注微信
1. 北京航空航天大学综合交通大数据应用技术国家工程实验室,北京 100083
2. 中国人民解放军32751单位,北京 100039
3. 北京航空航天大学大型飞机高级人才培训班,北京 100083
4. 北京航空航天大学电子信息工程学院,北京 100083
4. 北京航空航天大学前沿科学技术创新研究院,北京 100083
[ "张瞩熹,男,博士,主要研究方向为综合交通信息化及大数据技术、航空交通数据挖掘分析等" ]
[ "田旺,男,北京航空航天大学硕士生,主要研究方向为交通大数据、航迹融合等" ]
[ "朱少川,男,北京航空航天大学博士生,主要研究方向为机器学习、航迹模式挖掘、航迹预测等" ]
[ "刘洪岩,男,北京航空航天大学硕士生,主要研究方向为交通大数据、空域态势计算与调控等" ]
[ "朱熙,男,博士,北京航空航天大学助理研究员、硕士生导师,主要研究方向为交通大数据、空域态势计算与调控等" ]
纸质出版日期:2020-09-30,
网络出版日期:2020-09,
移动端阅览
张瞩熹, 田旺, 朱少川, 等. 多源异构航班航迹数据流实时融合方法研究[J]. 物联网学报, 2020,4(3):60-68.
ZHUXI ZHANG, WANG TIAN, SHAOCHUAN ZHU, et al. Research on real-time fusion method of multi-source heterogeneous flight trajectory data stream. [J]. Chinese journal on internet of things, 2020, 4(3): 60-68.
张瞩熹, 田旺, 朱少川, 等. 多源异构航班航迹数据流实时融合方法研究[J]. 物联网学报, 2020,4(3):60-68. DOI: 10.11959/j.issn.2096-3750.2020.00181.
ZHUXI ZHANG, WANG TIAN, SHAOCHUAN ZHU, et al. Research on real-time fusion method of multi-source heterogeneous flight trajectory data stream. [J]. Chinese journal on internet of things, 2020, 4(3): 60-68. DOI: 10.11959/j.issn.2096-3750.2020.00181.
二次雷达和广播式自动相关监视(ADS-B
automatic dependent surveillance-broadcast)是在空域监视系统中共存的两种主要监视手段,为了提高监视的精度和稳定性,实现二次雷达和 ADS-B 航迹实时融合至关重要。针对现有方法难以满足大规模航迹的实时融合需求,设计了一种使用大数据技术的二次雷达与 ADS-B 数据流实时融合的方法。该方法基于微批处理的大数据处理框架,遵循MapReduce编程模型,在得到较高质量融合航迹的同时,保障了系统数据处理的高并发能力与实时性。最后,基于真实航班数据开展了航迹实时融合仿真实验,验证了方法的可行性。
Secondary surveillance radar (SSR) and automatic dependent surveillance-broadcast (ADS-B) are the two main surveillance methods coexisting in the airspace surveillance system.In order to improve the accuracy and stability of surveillance
real-time fusion of SSR and ADS-B trajectory is crucial.In view of the fact that the existing methods are difficult to meet the real-time fusion requirements of large-scale trajectories
a real-time fusion method of SSR and ADS-B data streams was designed with big data technology.This method was based on the big data processing framework of micro-batch processing and followed the MapReduce programming model.While obtaining a fusion trajectory of high quality
it ensured high concurrency and real-time data processing capability of the system.Finally
a real-time flight simulation experiment based on real flight data was carried out to verify the feasibility of the method.
航迹融合多源异构微批处理MapReduce流式大数据
trajectory fusionmulti-source heterogeneousmicro-batch processingMapReducestreaming big data
中国民用航空局.2018年民航行业发展统计公报[R]. 2019.
CAAC.Civil aviation industry development statistical bulletin 2018[R]. 2019.
前瞻产业研究院.2019年全年中国民航业市场分析:运输飞机数量接近4 000架,营业收入突破万亿元[R]. 2020.
Forward Business Information Co.,Ltd.,Shenzhen. Market analysis of China civil aviation industry for 2019:the number of transport aircrafts is close to 4 000,operating revenue exceeds trillion yuan[R]. 2020.
王冶 . 空中交通管理自动化系统的设计与实现[D]. 厦门:厦门大学, 2015.
WANG Y . Design and implementation of air traffic management automation system[D]. Xiamen:Xiamen University, 2015.
王洪, 刘昌忠, 汪学刚 . 二次雷达 S 模式综述[J]. 电讯技术, 2008,48(7): 113-118.
WANG H, LIU C Z, WANG X G . Mode S for secondary surveillance radar (SSR):an introduction and overview[J]. Telecommunication Engineering, 2008,48(7): 113-118.
ZHANG J, LIU W, ZHU Y B . Study of ADS-B data evaluation[J]. Chinese Journal of Aeronautics, 2011,24(4): 461-466.
孙沂, 吴仁彪 . 空管自动化系统的多雷达与 ADS-B 数据融合技术综述[C]// 第二十五届中国(天津)2011’IT、网络、信息技术、电子、仪器仪表创新学术会议. 2011: 19-23.
SUN Y, WU R B . The data fusion of multi-radar and ADS-B in ATCautomation system[C]// The 25th China (Tianjin) 2011’IT,Network,Information Technology,Electronics,Instrumentation Innovation Conference. 2011: 19-23.
张军 . 空域监视技术的新进展及应用[J]. 航空学报, 2011,32(1): 1-14.
ZHANG J . New development and application of airspace surveillance technology[J]. Acta Aeronautica et Astronautica Sinica, 2011,32(1): 1-14.
BAUD O, HONORE N, TAUPIN O . Radar/ADS-B data fusion architecture for experimentation purpose[C]// 2006 9th International Conference on Information Fusion. IEEE, 2006: 1-6.
白松浩 . 多雷达与 ADS 数据融合的可变周期更新算法[J]. 交通运输工程学报, 2007,7(2): 19-23.
BAI S H . Variable period updating algorithm of multiradar and ADS data fusion[J]. Journal of Traffic and Transportation Engineering, 2007,7(2): 19-23.
刘伟, 黄智刚, 张军 ,等. 星基 ADS 与雷达误差校准算法的研究[J]. 航空学报, 2006,27(1): 120-124.
LIU W, HUANG Z G, ZHANG J ,et al. Studies on satellite-based ADS and radar registration algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2006,27(1): 120-124.
周雷, 辛晓娜, 陈川波 . 结合 ADS-B 的航管监视数据融合关键技术[J]. 计算机工程与应用, 2013,49(14): 231-235.
ZHOU L, XIN X N, CHEN C B . Key techniques of ATC surveillance data fusion with ADS-B[J]. Computer Engineering and Applications, 2013,49(14): 231-235.
董宇涵, 山秀明, 任勇 . 一种高性能航迹融合反馈系统的设计与实现[J]. 微计算机信息, 2005,21(12S): 145-147.
DONG Y H, SHAN X M, REN Y . A high performance track fusion system with feedback[J]. Microcomputer Information, 2005,21(12S): 145-147.
翟羽佳 . 多雷达信号与 ADS-B 数据融合技术浅析[J]. 空中交通, 2017:27.
ZHAI Y J . A brief discussion on data fusion technology of multi-radar signal and ADS-B signal[J]. Air Traffic, 2017:27.
许文君 . 空管自动化系统及数据融合方法研究[D]. 南京:南京邮电大学, 2020.
XU W J . Research on air traffic control automation system and data fusion method[D]. Nanjing:Nanjing University of Posts and Telecommunication, 2020.
张杰, 王丽娜, 赵媛 ,等. 基于 ZeroMQ 消息通讯的多源空中目标跟踪处理平台设计[J]. 计算机测量与控制, 2018,26(9): 219-222.
ZHANG J, WANG L N, ZHAO Y ,et al. Design of multi-source tracking platform for air target based on ZeroMQ communication library[J]. Computer Measurement & Control, 2018,26(9): 219-222.
李小智, 陶勇 . 基于消息中间件的航班信息显示系统的设计与实现[J]. 计算机系统应用, 2010,19(10): 7-11.
LI X Z, TAO Y . Design and implementation of flight information display system based on message-oriented middleware[J]. ComputerSystems & Applications, 2010,19(10): 7-11.
李文逍, 杨小虎 . 基于分布式缓存的消息中间件存储模型[J]. 计算机工程, 2010,36(13): 93-95.
LI W X, YANG X H . Storage model based on distributed cache for message oriented middleware[J]. Computer Engineering, 2010,36(13): 93-95.
JOHN V, LIU X . A survey of distributed message broker queues[J]. arXiv:1704.00411, 2017
陈纯 . 流式大数据实时处理技术、平台及应用[J]. 大数据, 2017,3(4): 1-8.
CHEN C . Real-time processing technology,platform and application of streaming big data[J]. Big Data Research, 2017,3(4): 1-8.
CAI Y J, WU B, ZHANG X W ,et al. Flow identification and characteristics mining from Internet traffic with Hadoop[C]// 2014 International Conference on Computer,Information and Telecommunication Systems (CITS). IEEE, 2014: 1-5.
VAIDYA M, DESHPANDE S . Study of Hadoop-based traffic management system[J]. IJCA Proceedings of ICRTITCS, 2013,3: 38-42.
SAFAEI A A . Real-time processing of streaming big data[J]. Real-Time Systems, 2017,53(1): 1-44.
SHAHRIVARI S . Beyond batch processing:towards real-time and streaming big data[J]. Computers, 2014,3(4): 117-129.
DEAN J, GHEMAWAT S . MapReduce:simplified data processing on large clusters[J]. Communications of the ACM, 2008,51(1): 107-113.
DEAN J, GHEMAWAT S . MapReduce[J]. Communications of the ACM, 2008,51(1): 107-113.
李建江, 崔健, 王聃 ,等. MapReduce 并行编程模型研究综述[J]. 电子学报, 2011,39(11): 2635-2642.
LI J J, CUI J, WANG D ,et al. Survey of MapReduce parallel programming model[J]. Acta Electronica Sinica, 2011,39(11): 2635-2642.
0
浏览量
699
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构