浏览全部资源
扫码关注微信
[ "马文峰(1974- ),男,博士,陆军工程大学副教授、硕士生导师,主要研究方向为深空通信、群体智能通信网络与集群控制、无线自组网网络技术等" ]
[ "王聪(1971- ),男,博士,陆军工程大学副教授、硕士生导师,主要研究方向为物联网通信、无人集群控制、飞行自组网网络技术等" ]
[ "田辉(1987- ),男,博士,陆军工程大学讲师,主要研究方向为物联网无线资源优化、智能无人通信网络、飞行自组网网络技术等" ]
[ "朱熠(1986- ),男,博士,陆军工程大学助理研究员,主要研究方向为集群通信与控制技术、智能系统等" ]
[ "于琼(1991- ),女,博士,陆军工程大学讲师,主要研究方向为信号处理、飞行自组网网络技术等" ]
[ "史涵意(1994- ),陆军工程大学讲师,主要研究方向为无人机总体设计与控制、智能无人自组网网络技术" ]
纸质出版日期:2023-03-30,
网络出版日期:2023-03,
移动端阅览
马文峰, 王聪, 田辉, 等. 火星探测中的深空测控通信关键技术[J]. 物联网学报, 2023,7(1):149-158.
WENFENG MA, CONG WANG, HUI TIAN, et al. Key technologies of deep space TT&C and telecommunication for Mars exploration. [J]. Chinese journal on internet of things, 2023, 7(1): 149-158.
马文峰, 王聪, 田辉, 等. 火星探测中的深空测控通信关键技术[J]. 物联网学报, 2023,7(1):149-158. DOI: 10.11959/j.issn.2096-3750.2023.00289.
WENFENG MA, CONG WANG, HUI TIAN, et al. Key technologies of deep space TT&C and telecommunication for Mars exploration. [J]. Chinese journal on internet of things, 2023, 7(1): 149-158. DOI: 10.11959/j.issn.2096-3750.2023.00289.
我国深空测控系统的实施始终围绕探月工程的三步走战略,包括“绕”“落”“回”,从关键技术突破、系统初步建成到系统完善,逐步发展起来。如今火星探测工程的成功实施,将进一步带动深空测控系统能力的建设与提升。从深空应答关键技术和地面站系统建设等方面,回顾了我国深空测控系统从无到有的发展历程,对火星深空测控系统的关键技术进行了总结。同时,针对美国在行星探测上的优势,对“毅力号”火星车的深空应答技术进行了分析概述,为我国火星探测未来发展提供借鉴。进一步,结合美国深空站建设现状,针对我国当前快速增长的对未来深空探测任务的需求,简要回顾了中国深空站系统结构、总体性能、关键系统设计和贡献。
The implementation of China's deep space telemetry
track and command (TT&C) system has always revolved around the three-step strategy of the lunar exploration project
including “circling”
“falling” and “returning”
which helps us to make great achievements from the breakthrough of key technologies
the initial construction of the system to the optimization of the system.At present
the success of Mars exploration will further promote our ability of deep space TT&C system construction.In terms of the view of the key technologies of deep space response and the ground station system construction
the development process of China's deep space TT&C system from scratch was reviewed
and the key technologies of Mars deep space TT&C system were summarized.At the same time
in view of the advantages of the United States in planetary exploration
the deep space response technology of the “Perseverance” rover was analyzed and summarized
which can provide reference for the future development of Mars exploration in China.Furthermore
considering the construction of the US deep space station and the current rapidly growing demand for future deep space exploration missions
the system structure
overall performance
key system design issues and contributions of these Chinese deep space stations were briefly reviewed.
深空测控通信火星探测应答机深空站
deep space TT&C and telecommunicationMars explorationtransponderdeep space station
天问一号任务实现我国航天发展史上 6 个首次[N]. 人民日报, 2021-06-13(1).
The Tianwen 1 mission achieved six firsts in China's space history[N]. People's Daily, 2021-06-13(1).
天问一号传回高清火星影像,全面整理火星探索的问与答[EB]. 2021-03-04.
Tianwen 1 has sent back high-definition images of Mars,a comprehensive collection of questions and answers on Mars exploration[EB]. 2021-03-04.
韩来辉, 李新胜 . 地基深空网发射机现状及未来发展[J]. 飞行器测控学报, 2017,36(2): 79-85.
HAN L H, LI X S . Development and status in ground transmitters for deep space networks[J]. Journal of Spacecraft TT&C Technology, 2017,36(2): 79-85.
董光亮, 李海涛, 郝万宏 ,等. 中国深空测控系统建设与技术发展[J]. 深空探测学报, 2018,5(2): 99-114.
DONG G L, LI H T, HAO W H ,et al. Development and future of China's deep space TT & C system[J]. Journal of Deep Space Exploration, 2018,5(2): 99-114.
王冬冬, 刘德喜, 王莉莉 ,等. 航天器测控频段应用现状与展望[J]. 遥测遥控, 2016,37(6): 45-53.
WANG D D, LIU D X, WANG L L ,et al. The Current application status and development of TT & C frequency band for spacecraft[J]. Journal of Telemetry,Tracking and Command, 2016,37(6): 45-53.
陈腾博, 孙大媛, 李佼珊 ,等. 一种X/Ka双频共用同轴馈源设计[J]. 航天器工程, 2016,25(2): 58-63.
CHEN T B, SUN D Y, LI J S ,et al. Design of X/ka dual band coaxial feed[J]. Spacecraft Engineering, 2016,25(2): 58-63.
王玮, 梁克, 郑伟 . 一种载人航天器深空通信系统架构的设想[J]. 航天器工程, 2013,22(6): 18-23.
WANG W, LIANG K, ZHENG W . A thought of deep space communication system structure for manned spacecraft[J]. Spacecraft Engineering, 2013,22(6): 18-23.
李长生, 谢静波, 陆凝 ,等. 基于 X 频段深空应答机的石英晶体性能需求[J]. 飞行器测控学报, 2014,33(5): 387-391.
LI C S, XIE J B, LU N ,et al. Performance requirements of quartz crystal for X-band deep space transponders[J]. Journal of Spacecraft TT&C Technology, 2014,33(5): 387-391.
周卫来, 朱培芸, 成克伟 ,等. X 频段深空探测全向天线设计与实现[EB]. 2019.
ZHOU W L, ZHU P Y, CHENG K W ,et al. Design and implementation of X band omnidirectional antenna for deep space exploration[EB]. 2019.
刘适, 黄晓峰, 毛志毅 ,等. 嫦娥四号着陆器测控通信系统设计与验证[J]. 航天器工程, 2019,28(4): 85-93.
LIU S, HUANG X F, MAO Z Y ,et al. Design and verification of telecommunication system for chang'e-4 lander[J]. Spacecraft Engineering, 2019,28(4): 85-93.
航天九院多项科技保驾“天问一号”进入火星轨道[N]. 北京日报, 2021-02-10.
A number of technologies from the ninth Academy of Aerospace Sciences helped Tianwen 1 enter Mars orbit[N]. Beijing Daily, 2021-02-10.
知乎网. 你知道地面与火星探测器之间是如何实现通信的吗?[EB]. 2021.
Zhihu.com. Do you know how to communicate between the ground and the Mars rover?[EB]. 2021.
吴伟仁, 黄磊, 节德刚 ,等. 嫦娥二号工程 X 频段测控通信系统设计与试验[J]. 中国科学:信息科学, 2011,41(10): 1171-1183.
WU W R, HUANG L, JIE D G ,et al. Design and experiment of X-band TT & C system for the project of CE-2[J]. Scientia Sinica (Informationis), 2011,41(10): 1171-1183.
刘适, 黄晓峰, 乔旭君 . 火星探测进入、下降、着陆过程通信方案[J]. 航天器工程, 2015,24(4): 94-101.
LIU S, HUANG X F, QIAO X J . Telecommunication system scheme for Mars probe during EDL[J]. Spacecraft Engineering, 2015,24(4): 94-101.
薛喜平, 李春来, 孔德庆 ,等. 太阳风对火星探测通信信道的影响及抗闪烁策略研究[J]. 天文研究与技术, 2017,14(1): 110-116.
XUE X P, LI C L, KONG D Q ,et al. Analysis of the influence of solar wind and anti solar wind flicker strategy on the transmission channel of Mars probes[J]. Astronomical Research & Technology, 2017,14(1): 110-116.
MACKAY D J C, NEAL R M . Near Shannon limit performance of low density parity check codes[J]. Electronics Letters, 1996,32(18): 1645.
张周不染, 朱煜良, 杨盛庆 ,等. 深空星间链路信道建模及硬件模拟器研制[J]. 飞控与探测, 2020,3(5): 97-104.
ZHANG Z B R, ZHU Y L, YANG S Q ,et al. Channel modeling and hardware emulation for deep space inter-satellite links[J]. Flight Control & Detection, 2020,3(5): 97-104.
卢满宏, 周三文, 谌明 ,等. 深空测控通信技术专题研究[J]. 遥测遥控, 2007,28(S1): 11-16.
LU M H, ZHOU S W, CHEN M ,et al. Research on deep space TT & C and communication[J]. Journal of Telemetry,Tracking and Command, 2007,28(S1): 11-16.
智东西公众号. 毅力号火星车发射!美国 56 年来首探火星生命, 2020火星三杰齐了[EB]. 2020.
Zhidxcom. Perseverance rover launches! America's first search for life on Mars in 56 years is set for 2020[EB]. 2020.
ALENG自媒体. 毅力号已经传回88000张照片,为何祝融号只传回了不足10张?[EB]. 2021.
ALENG Self-Media. Why did Zhurong send back less than 10?[EB]. 2021.
韩来辉 . 美国地基深空探测网现状及对我国发展的启示[J]. 现代雷达, 2020,42(5): 1-8.
HAN L H . Status of ground-based deep space exploration network of USA and its revelation for China[J]. Modern Radar, 2020,42(5): 1-8.
蒋罗婷 . 国外小卫星测控通信网发展现状和趋势[J]. 电讯技术, 2017,57(11): 1341-1348.
JIANG L T . Development and trends of foreign TT & C and communication networks for small satellites[J]. Telecommunication Engineering, 2017,57(11): 1341-1348.
吴海涛 . 面向深空通信网络的高效文件传输策略研究[D]. 哈尔滨:哈尔滨工业大学, 2017.
WU H T . Research on the efficient file delivery strategies for deep space communications network[D]. Harbin:Harbin Institute of Technology, 2017.
颜洁, 彭玉婷 . NASA 空间通信与导航网络现状及未来发展[J]. 国际太空, 2018(7): 25-31.
YAN J, PENG Y T . Current status and future development of NASA space communications and navigation (SCaN) network[J]. Space International, 2018(7): 25-31.
白帆, 李炯卉, 徐宝碧 ,等. 深空探测光通信技术途经分析与展望[J]. 航天器工程, 2022,31(2): 139-145.
BAI F, LI J H, XU B B ,et al. Technical approach analysis and prospect of optical communication technology for deep space explorations[J]. Spacecraft Engineering, 2022,31(2): 139-145.
吴伟仁, 李海涛, 李赞 ,等. 中国深空测控网现状与展望[J]. 中国科学:信息科学, 2020,50(1): 87-108.
WU W R, LI H T, LI Z ,et al. Status and prospect of China's deep space TT & C network[J]. Scientia Sinica (Informationis), 2020,50(1): 87-108.
GU L T, YU L, LI W F ,et al. A publish-subscribe networking architecture for future manned deep space exploration[J]. China Communications, 2020,17(7): 38-51.
YU G, DONG Z X, ZHU Y . Network evaluation and protocol deployment for complex deep-space networks based on DTN[J]. China Communications, 2020,17(9): 237-258.
XU G J, ZHANG Q Y . Mixed RF/FSO deep space communication system under solar scintillation effect[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021,57(5): 3237-3251.
HONG T S, SU Y, DAI S ,et al. An improved method of surface clutter simulation based on orbiting radar in Tianwen-1 Mars exploration[J]. Radio Science, 2022,57(9): 1-18.
YAN W, REN X, LIU J J ,et al. Topographic reconstruction of the“Tianwen-1” landing area on the Mars using high resolution imaging camera images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022(60): 1-14.
0
浏览量
498
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构