浏览全部资源
扫码关注微信
1. 北京交通大学计算机与信息技术学院,北京 100044
2. 北京交通大学高速铁路网络管理教育部工程研究中心,北京 100044
3. 清华大学北京信息科学与技术国家研究中心,北京 100084
4. 中国科学院计算技术研究所,北京 100190
[ "耿光磊(1999- ),男,北京交通大学计算机与信息技术学院硕士生,主要研究方向为联邦学习、车联网资源分配等" ]
[ "高博(1984- ),男,博士,北京交通大学计算机与信息技术学院副教授,主要研究方向为无线网络、移动计算、机器学习等" ]
[ "熊轲(1981- ),男,博士,北京交通大学计算机与信息技术学院教授、博士生导师、副院长,主要研究方向为绿色物联网、网络资源优化、网络智能与移动计算等" ]
[ "樊平毅(1965- ),男,博士,清华大学电子工程系教授、博士生导师,主要研究方向为网络信息论、无线通信、大数据理论、分布式机器学习等" ]
[ "陆杨(1992- ),男,博士,北京交通大学计算机与信息技术学院教授,主要研究方向为优化理论、机器学习赋能移动通信系统等" ]
[ "王煜炜(1980- )男,博士,中国科学院计算技术研究所高级工程师、硕士生导师,主要研究方向为边缘智能、无人系统网络协同、未来网络体系架构等" ]
纸质出版日期:2023-06-30,
网络出版日期:2023-06,
移动端阅览
耿光磊, 高博, 熊轲, 等. 联邦学习赋能6G网络综述[J]. 物联网学报, 2023,7(2):50-66.
GUANGLEI GENG, BO GAO, KE XIONG, et al. A survey of federated learning for 6G networks. [J]. Chinese journal on internet of things, 2023, 7(2): 50-66.
耿光磊, 高博, 熊轲, 等. 联邦学习赋能6G网络综述[J]. 物联网学报, 2023,7(2):50-66. DOI: 10.11959/j.issn.2096-3750.2023.00323.
GUANGLEI GENG, BO GAO, KE XIONG, et al. A survey of federated learning for 6G networks. [J]. Chinese journal on internet of things, 2023, 7(2): 50-66. DOI: 10.11959/j.issn.2096-3750.2023.00323.
基于内生人工智能(AI
artificial intelligence)在大规模复杂异构网络中实现万物智联是6G的重要特征之一。联邦学习(FL
federated learning)因其数据处理本地化这一特有的机器学习架构,被认为是在6G场景中实现分布式泛在智联的重要途径,已成为6G的重要研究方向。为此,首先分析了在未来6G,特别是物联网(IoT
internet of things)场景中引入分布式AI的必要性,以此为基础论述了FL在满足相关6G指标要求的潜力,并从架构设计、资源利用、数据传输、隐私保护、服务提供角度综述了FL如何赋能6G网络,最后给出了FL赋能6G研究存在的一些关键挑战和未来有价值的研究方向。
It is an important feature of the 6G that how to realize everything interconnection through large-scale complex heterogeneous networks based on native artificial intelligence (AI).Thanks to the distinct machine learning architecture of data processing locally
federated learning (FL) is regarded as one of the promising solutions to incorporate distributed AI in 6G scenarios
and has become a critical research direction of 6G.Therefore
the necessity of introducing distributed AI into the future 6G especially for internet of things (IoT) scenarios was analyzed.And then
the potentials of FL in meeting the 6G requirements were discussed
and the state-of-the-arts of FL related technologies such as architecture design
resource utilization
data transmission
privacy protection
and service provided for 6G were investigated.Finally
several key technical challenges and potential valuable research directions for FL-empowered 6G were put forward.
6G网络物联网人工智能联邦学习
6G networksinternet of thingsartificial intelligencefederated learning
栾宁, 熊轲, 张煜 ,等. 6G:典型应用、关键技术与面临挑战[J]. 物联网学报, 2022,6(1): 29-43.
LUAN N, XIONG K, ZHANG Y ,et al. 6G:typical applications,key technologies and challenges[J]. Chinese Journal on Internet of Things, 2022,6(1): 29-43.
SHAHRAKI A, ABBASI M, PIRAN M J ,et al. A comprehensive survey on 6G networks:applications,core services,enabling technologies,and future challenges[EB]. 2021.
LI T, SAHU A K, TALWALKAR A ,et al. Federated learning:challenges,methods,and future directions[J]. IEEE Signal Processing Magazine, 2020,37(3): 50-60.
BOUZINIS P S, DIAMANTOULAKIS P D, KARAGIANNIDIS G K . Wireless federated learning (WFL) for 6G networks part I:research challenges and future trends[J]. IEEE Communications Letters, 2022,26(1): 3-7.
YANG Z H, CHEN M Z, WONG K K ,et al. Federated learning for 6G:applications,challenges,and opportunities[J]. Engineering, 2022,8: 33-41.
AL-QURAAN M, MOHJAZI L, BARIAH L ,et al. Edge-native intelligence for 6G communications driven by federated learning:a survey of trends and challenges[EB]. 2021.
LIU Y, YUAN X L, XIONG Z H ,et al. Federated learning for 6G communications:challenges,methods,and future directions[J]. China Communications, 2020,17(9): 105-118.
XIAO Y, SHI G M, KRUNZ M ,et al. Towards ubiquitous AI in 6G with federated learning[EB]. 2020.
NGUYEN D C, DING M, PATHIRANA P N ,et al. Federated learning for internet of things:a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021,23(3): 1622-1658.
白卫岗, 盛敏, 杜盼盼 . 6G卫星物联网移动性管理:挑战与关键技术[J]. 物联网学报, 2020,4(1): 104-110.
BAI W G, SHENG M, DU P P . Mobility management of the 6G satellite IoT:challenges and key techniques[J]. Chinese Journal on Internet of Things, 2020,4(1): 104-110.
PATIL A, IYER S, PANDYA R J . A survey of machine learning algorithms for 6G wireless networks[J]. arXiv preprint, 2022,arXiv:2203.08429.
中国通信学会. 通感算一体化网络前沿报告[R]. 2021.
China Institute of Communications. Synesthesia integrated network frontier report[R]. 2021.
GUO H Z, ZHOU X Y, LIU J J ,et al. Vehicular intelligence in 6G:networking,communications,and computing[J]. Vehicular Communications, 2022,33:100399.
LIU T, DING J H, WANG T ,et al. Towards fast and accurate federated learning with non-IID data for cloud-based IoT applications[J]. arXiv preprint, 2022,arXiv:2201.12515.
LIU G Y, ZHU J K, HUANG Y M ,et al. Guest editorial:6G towards 2030:from key technology to network architecture[J]. China Communications, 2022,19(3): 3-6.
HOKAZONO Y, KOHARA H, KISHIYAMA Y ,et al. Extreme coverage extension in 6G:cooperative non-terrestrial network architecture integrating terrestrial networks[C]// Proceedings of 2022 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2022: 138-143.
ABREHA H G, HAYAJNEH M, SERHANI M A . Federated learning in edge computing:a systematic survey[J]. Sensors (Basel,Switzerland), 2022,22(2): 450.
ZHAO B R, CUI Q M, LIANG S Y ,et al. Green concerns in federated learning over 6G[J]. China Communications, 2022,19(3): 50-69.
ABAD M S H, OZFATURA E, GUNDUZ D ,et al. Hierarchical federated learning ACROSS heterogeneous cellular networks[C]// Proceedings of ICASSP 2020 - 2020 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2020: 8866-8870.
LIU L M, ZHANG J, SONG S H ,et al. Client-edge-cloud hierarchical federated learning[C]// Proceedings of ICC 2020 - 2020 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2020: 1-6.
HOSSEINALIPOUR S, BRINTON C G, AGGARWAL V ,et al. From federated to fog learning:distributed machine learning over heterogeneous wireless networks[J]. IEEE Communications Magazine, 2020,58(12): 41-47.
CHEN M Z, POOR H V, SAAD W ,et al. Wireless communications for collaborative federated learning[J]. IEEE Communications Magazine, 2020,58(12): 48-54.
NISHIO T, YONETANI R . Client selection for federated learning with heterogeneous resources in mobile edge[C]// Proceedings of ICC 2019 2019 IEEE International Conference on Communications (ICC). Piscataway:IEEE Press, 2019: 1-7.
LIU X L, DENG Y S, MAHMOODI T . A novel hybrid split and federated learning architecture in wireless UAV networks[C]// Proceedings of ICC 2022 - IEEE International Conference on Communications. Piscataway:IEEE Press, 2022: 1-6.
PRATHIBA S B, RAJA G, ANBALAGAN S ,et al. Cyber twin-driven federated learning based personalized service provision for 6G-V2X[J]. IEEE Transactions on Vehicular Technology, 2022,71(5): 4632-4641.
BANO S, TONELLOTTO N, CASSARÀ P ,et al. KafkaFed:two-tier federated learning communication architecture for Internet of vehicles[C]// Proceedings of 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). Piscataway:IEEE Press, 2022: 515-520.
WANG Z, LI X H, WU T H ,et al. A credibility-aware swarm-federated deep learning framework in Internet of vehicles[J]. arXiv preprint, 2021,arXiv:2108.03981.
ZHOU X K, LIANG W, SHE J H ,et al. Two-layer federated learning with heterogeneous model aggregation for 6G supported Internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2021,70(6): 5308-5317.
PENG Y Q, CHEN Z Y, CHEN Z X ,et al. BFLP:an adaptive federated learning framework for Internet of vehicles[J]. Mobile Information Systems, 2021: 1-18.
CHAI H Y, LENG S P, CHEN Y J ,et al. A hierarchical blockchain-enabled federated learning algorithm for knowledge sharing in Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021,22(7): 3975-3986.
QU Y B, DONG C, ZHENG J C ,et al. Empowering the edge intelligence by air-ground integrated federated learning in 6G networks[J]. arXiv preprint, 2020,arXiv:2007.13054.
KHAN L U, TUN Y K, ALSENWI M ,et al. A dispersed federated learning framework for 6G-enabled autonomous driving cars[J]. arXiv preprint, 2021,arXiv:2105.09641.
LIU S, YU J, DENG X H ,et al. FedCPF:an efficient-communication federated learning approach for vehicular edge computing in 6G communication networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23(2): 1616-1629.
YU A, YANG Q K, DOU L H ,et al. Federated imitation learning:a cross-domain knowledge sharing framework for traffic scheduling in 6G ubiquitous IoT[J]. IEEE Network, 2021,35(5): 136-142.
YANG Z H, CHEN M Z, SAAD W ,et al. Energy efficient federated learning over wireless communication networks[J]. IEEE Transactions on Wireless Communications, 2021,20(3): 1935-1949.
LI J, GAO H, LV T J ,et al. Deep reinforcement learning based computation offloading and resource allocation for MEC[C]// Proceedings of 2018 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway:IEEE Press, 2018: 1-6.
PENG H X, SHEN X M . Multi-agent reinforcement learning based resource management in MEC- and UAV-assisted vehicular networks[J]. IEEE Journal on Selected Areas in Communications, 2021,39(1): 131-141.
ZARIF A H, AZMI P, MOKARI N ,et al. AoI minimization in energy harvesting and spectrum sharing enabled 6G networks[J]. arXiv preprint, 2021,arXiv:2107.00340.
TANG S P, ZHOU W Q, CHEN L Y ,et al. Battery-constrained federated edge learning in UAV-enabled IoT for B5G/6G networks[J]. Physical Communication, 2021,47:101381.
YE Y T, WEI W S, GENG D Q ,et al. Dynamic coordination in UAV swarm assisted MEC via decentralized deep reinforcement learning[C]// Proceedings of 2020 International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway:IEEE Press, 2020: 1064-1069.
WEI D W, MA J F, LUO L B ,et al. Computation offloading over multi-UAV MEC network:a distributed deep reinforcement learning approach[J]. Computer Networks, 2021,199:108439.
YANG Z, LIU Y W, CHEN Y . Distributed reinforcement learning for NOMA-enabled mobile edge computing[C]// Proceedings of 2020 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway:IEEE Press, 2020: 1-6.
TEHRANI P, RESTUCCIA F, LEVORATO M . Federated deep reinforcement learning for the distributed control of NextG wireless networks[C]// Proceedings of 2021 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). Piscataway:IEEE Press, 2022: 248-253.
ZHUO H K, FENG W F, XU Q ,et al. Federated reinforcement learning[EB]. 2019.
MESSAOUD S, BRADAI A, AHMED O B ,et al. Deep federated Q-learning-based network slicing for industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2021,17(8): 5572-5582.
NIE Y W, ZHAO J H, GAO F F ,et al. Semi-distributed resource management in UAV-aided MEC systems:a multi-agent federated reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2021,70(12): 13162-13173.
ZANG L Q, ZHANG X, GUO B R . Federated deep reinforcement learning for online task offloading and resource allocation in WPC-MEC networks[J]. IEEE Access, 2022,10: 9856-9867.
XUE Z Y, ZHOU P, XU Z C ,et al. A resource-constrained and privacy-preserving edge-computing-enabled clinical decision system:a federated reinforcement learning approach[J]. IEEE Internet of Things Journal, 2021,8(11): 9122-9138.
CHEN M Z, SHLEZINGER N, POOR H V ,et al. Communication-efficient federated learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021,118(17): e2024789118.
CHEN M Z, GÜNDÜZ D, HUANG K B ,et al. Distributed learning in wireless networks:recent progress and future challenges[J]. IEEE Journal on Selected Areas in Communications, 2021,39(12): 3579-3605.
HUANG T S, LIN W W, SHEN L ,et al. Stochastic client selection for federated learning with volatile clients[J]. IEEE Internet of Things Journal, 2022,9(20): 20055-20070.
ZHU Z Q, WAN S, FAN P Y ,et al. Federated multiagent actor-critic learning for age sensitive mobile-edge computing[J]. IEEE Internet of Things Journal, 2022,9(2): 1053-1067.
LI R J, XU H B, ZHANG G P ,et al. Latency optimization for federated learning over wireless power transfer[J]. Physical Communication, 2022,53:101765.
HUANG N, WANG T S, WU Y ,et al. Delay minimization for intelligent reflecting surface assisted federated learning[J]. China Communications, 2022,19(4): 216-229.
PRATHIBA S B, RAJA G, ANBALAGAN S ,et al. Federated learning empowered computation offloading and resource management in 6G-V2X[J]. IEEE Transactions on Network Science and Engineering, 2022,9(5): 3234-3243.
YANG Q, LIU Y, CHEN T J ,et al. Federated machine learning:concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019,10(2): 1-19.
RIBERO M, VIKALO H . Communication-efficient federated learning via optimal client sampling[J]. arXiv preprint, 2020,arXiv:2007.15197.
LI X Y, QU Z, TANG B ,et al. Stragglers are not disaster:a hybrid federated learning algorithm with delayed gradients[J]. arXiv preprint, 2021,arXiv:2102.06329.
CHO Y J, WANG J Y, JOSHI G . Client selection in federated learning:convergence analysis and power-of-choice selection strategies[J]. arXiv preprint, 2020,arXiv:2010.01243.
YOSHIDA N, NISHIO T, MORIKURA M ,et al. MAB-based client selection for federated learning with uncertain resources in mobile networks[C]// Proceedings of 2020 IEEE Globecom Workshops (GC Wkshps. Piscataway:IEEE Press, 2021: 1-6.
WEI K, LI J, DING M ,et al. Federated learning with differential privacy:algorithms and performance analysis[J]. IEEE Transactions on Information Forensics and Security, 2020,15: 3454-3469.
MA C, LI J, DING M ,et al. On safeguarding privacy and security in the framework of federated learning[J]. IEEE Network, 2020,34(4): 242-248.
WANG R J, LAI J S, ZHANG Z Y ,et al. Privacy-preserving federated learning for Internet of medical things under edge computing[J]. IEEE Journal of Biomedical and Health Informatics, 2022.
SONG J C, WANG W Z, GADEKALLU T R ,et al. EPPDA:an efficient privacy-preserving data aggregation federated learning scheme[J]. IEEE Transactions on Network Science and Engineering, 2022,PP(99): 1.
KANAGAVELU R, LI Z X, SAMSUDIN J ,et al. Two-phase multi-party computation enabled privacy-preserving federated learning[C]// Proceedings of 2020 20th IEEE/ACM International Symposium on Cluster,Cloud and Internet Computing (CCGRID). Piscataway:IEEE Press, 2020: 410-419.
ZHU H F, MONG GOH R S, NG W K . Privacy-preserving weighted federated learning within the secret sharing framework[J]. IEEE Access, 2020,8: 198275-198284.
KANAGAVELU R, WEI Q S, LI Z X ,et al. CE-Fed:communication efficient multi-party computation enabled federated learning[J]. Array, 2022,15:100207.
MENG Q, ZHOU F, REN H N ,et al. Improving federated learning face recognition via privacy-agnostic clusters[J]. arXiv preprint, 2022,arXiv:2201.12467.
WAN Y C, QU Y Y, GAO L X ,et al. Privacy-preserving blockchain-enabled federated learning for B5G-Driven edge computing[J]. Computer Networks, 2022,204:108671.
LIU W Y, CHENG J H, WANG X L ,et al. Hybrid differential privacy based federated learning for Internet of Things[J]. Journal of Systems Architecture, 2022,124:102418.
HU R, GONG Y M, GUO Y X . Federated learning with sparsified model perturbation:improving accuracy under client-level differential privacy[J]. arXiv preprint, 2022,arXiv:2202.07178.
WU X, ZHANG Y T, SHI M Y ,et al. An adaptive federated learning scheme with differential privacy preserving[J]. Future Generation Computer Systems, 2022,127: 362-372.
HUANG J, XU C, JI Z H ,et al. AFLPC:an asynchronous federated learning privacy-preserving computing model applied to 5G-V2X[J]. Security and Communication Networks, 2022,2022: 1-11.
PARK J, LIM H . Privacy-preserving federated learning using homomorphic encryption[J]. Applied Sciences, 2022,12(2): 734.
KU H C, SUSILO W, ZHANG Y D ,et al. Privacy-preserving federated learning in medical diagnosis with homomorphic re-Encryption[J]. Computer Standards & Interfaces, 2022,80:103583.
WIBAWA F, CATAK F O, SARP S ,et al. Homomorphic encryption and federated learning based privacy-preserving CNN training:COVID-19 detection use-case[J]. arXiv preprint, 2022,arXiv:2204.07752.
PEJIC I, WANG R, LIANG K ,et al. Effect of homomorphic encryption on the performance of training federated learning generative adversarial networks[EB]. 2022.
ONOSZKO N, KARLSSON G, MOGREN O ,et al. Decentralized federated learning of deep neural networks on non-iid data[J]. arXiv preprint, 2021,arXiv:2107.08517.
HUANG Y T, CHU L Y, ZHOU Z R ,et al. Personalized cross-silo federated learning on non-IID data[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021,35(9): 7865-7873.
LI T, SANJABI M, BEIRAMI A ,et al. Fair resource allocation in federated learning[J]. arXiv preprint, 2019,arXiv:1905.10497.
CHEN H Y, CHAO W L . FedBE:making Bayesian model ensemble applicable to federated learning[J]. arXiv preprint, 2020,arXiv:2009.01974.
SHAMSIAN A, NAVON A, FETAYA E ,et al. Personalized federated learning using hypernetworks[J]. arXiv preprint, 2021,arXiv:2103.04628.
ARIVAZHAGAN M G, AGGARWAL V, SINGH A K ,et al. Federated learning with personalization layers[J]. arXiv preprint, 2019,arXiv:1912.00818.
COLLINS L, HASSANI H, MOKHTARI A ,et al. Exploiting shared representations for personalized federated learning[J]. arXiv preprint, 2021,arXiv:2102.07078.
SATTLER F, MULLER K R, SAMEK W . Clustered federated learning:model-agnostic distributed multitask optimization under privacy constraints[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,32(8): 3710-3722.
LI XX, JIANG M R, ZHANG X F ,et al. FedBN:federated learning on non-IID features via local batch normalization[J]. arXiv preprint, 2021,arXiv:2102.07623.
DINH C T, TRAN N H, NGUYENT D . Personalized federated learning with Moreau envelopes[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. New York:ACM Press, 2020: 21394-21405.
ACHITUVE I, SHAMSIAN A, NAVON A ,et al. Relational learning with Gaussian processes[M]. Advances in Neural Information Processing Systems 19. Vancouver: The MIT Press, 2007.
DANDI Y, BARBA L, JAGGI M . Implicit gradient alignment in distributed and federated learning[J]. arXiv preprint, 2021,arXiv:2106.13897.
RUAN Y C, JOE-WONG C, . FedSoft:soft clustered federated learning with proximal local updating[J]. arXiv preprint, 2021,arXiv:2112.06053.
YANG M, WANG X M, QIAN H ,et al. An improved federated learning algorithm for privacy preserving in cybertwin-driven 6G system[J]. IEEE Transactions on Industrial Informatics, 2022,18(10): 6733-6742.
AAMER B, CHERGUI H, BENJILLALI M ,et al. Entropy-driven stochastic federated learning in non-IID 6G edge-RAN[J]. Frontiers in Communications and Networks, 2021,2:739414.
SMITH V, CHIANG C K, SANJABI M ,et al. Federated multi-task learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM Press, 2017: 4427-4437.
LI T, HU S Y, BEIRAMI A ,et al. Ditto:fair and robust federated learning through personalization[J]. arXiv preprint, 2020,arXiv:2012.04221.
FINN C, ABBEEL P, LEVINE S . Model-agnostic meta-learning for fast adaptation of deep networks[J]. arXiv preprint, 2017,arXiv:1703.03400.
JIANG Y H, KONEČNÝ J, RUSH K ,et al. Improving federated learning personalization via model agnostic meta learning[J]. arXiv preprint, 2019,arXiv:1909.12488.
ACAR D A E, ZHAO Y, ZHU R ,et al. Debiasing model updates for improving personalized federated training[C]// International Conference on Machine Learning. New York:PMLR, 2021: 21-31.
HINTON G, VINYALS O, DEAN J . Distilling the knowledge in a neural network[J]. arXiv preprint, 2015,arXiv:1503.02531.
ZHU Z D, HONG J Y, ZHOU J Y . Data-free knowledge distillation for heterogeneous federated learning[J]. Proceedings of Machine Learning Research, 2021,139: 12878-12889.
LIN T, KONG L J, STICH S U ,et al. Ensemble distillation for robust model fusion in federated learning[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. New York:ACM Press, 2020: 2351-2363.
KAUL S, GRUTESER M, RAI V ,et al. Minimizing age of information in vehicular networks[C]// Proceedings of 2011 8th Annual IEEE Communications Society Conference on Sensor,Mesh and Ad Hoc Communications and Networks. Piscataway:IEEE Press, 2011: 350-358.
熊轲, 胡慧敏, 艾渤 ,等. 6G时代信息新鲜度优先的无线网络设计[J]. 物联网学报, 2020,4(1): 80-91.
XIONG K, HU H M, AI B ,et al. Information freshness orientated wireless network design for 6G[J]. Chinese Journal on Internet of Things, 2020,4(1): 80-91.
KHAN L U, SAAD W, HAN Z ,et al. Federated learning for internet of things:recent advances,taxonomy,and open challenges[J]. IEEE Communications Surveys & Tutorials, 2021,23(3): 1759-1799.
REN H C, DENG J J, XIE X H . GRNN:generative regression neural network—a data leakage attack for federated learning[J]. ACM Transactions on Intelligent Systems and Technology, 2022,13(4): 1-24.
NGUYEN D C, DING M, PHAM Q V ,et al. Federated learning meets blockchain in edge computing:opportunities and challenges[J]. IEEE Internet of Things Journal, 2021,8(16): 12806-12825.
STRINATI E C, BELOT D, FALEMPIN A ,et al. Toward 6G:from new hardware design to wireless semantic and goal-oriented communication paradigms[C]// Proceedings of ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC). Piscataway:IEEE Press, 2021: 275-282.
ZHANG H N, WANG F . Wireless sensor energy harvesting and management[EB]. 2022.
ZHU X M, JIANG C X, KUANG L L ,et al. Cooperative transmission in integrated terrestrial-satellite networks[J]. IEEE Network, 2019,33(3): 204-210.
PANG L, YANG C G, CHEN D Y ,et al. A survey on intent-driven networks[J]. IEEE Access, 2020,8: 22862-22873.
周洋程, 闫实, 彭木根 . 意图驱动的 6G 无线接入网络[J]. 物联网学报, 2020,4(1): 72-79.
ZHOU Y C, YAN S, PENG M G . Intent-driven 6G radio access network[J]. Chinese Journal on Internet of Things, 2020,4(1): 72-79.
VU T T, NGO D T, TRAN N H ,et al. Cell-free massive MIMO for wireless federated learning[J]. IEEE Transactions on Wireless Communications, 2020,19(10): 6377-6392.
NI W L, LIU Y W, YANG Z H ,et al. Integrating over-the-air federated learning and non-orthogonal multiple access:what role can RIS play?[J]. IEEE Transactions on Wireless Communications, 2022,21(12): 10083-10099.
JAMES SINGH K, HUANG Y M, AHMED T ,et al. Micro-LED as a promising candidate for high-speed visible light communication[J]. Applied Sciences, 2020,10(20): 7384.
0
浏览量
306
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构