浏览全部资源
扫码关注微信
1. 江南大学物联网工程学院电子工程系,江苏 无锡 214122
2. 南京大学电子科学与工程学院先进微结构协同创新中心,江苏 南京 210093
3. 无锡市中心康复医院,江南大学附属精神卫生中心,江苏 无锡 214122
[ "梁峻阁(1991- ),男,江南大学物联网工程学院副教授、院长助理、射频传感技术实验室负责人,主要研究方向为传感器及检测电路、微波传感与系统" ]
[ "宋怡然(2000- ),女,江南大学物联网工程学院电子工程系硕士生,主要研究方向为生物传感器" ]
[ "孙杨帆(1986- ),男,无锡市中心康复医院、江南大学附属精神卫生中心主治医师,主要研究方向为智能可穿戴装备在健康促进和康复医学领域的应用" ]
[ "计樱莹(1987- ),女,无锡市中心康复医院、江南大学附属精神卫生中心副主任医师,主要研究方向为神经退行性疾病与认知相关疾病的诊断、治疗与康复" ]
[ "潘力佳(1973- ),男,博士,南京大学电子科学与工程学院院长、教授、博士生导师,主要研究方向为导电聚合物、电子皮肤设备" ]
[ "施毅(1962- ),男,博士,南京大学电子科学与工程学院院长、教授、博士生导师,主要研究方向为纳米电子学和纳米光电子" ]
纸质出版日期:2023-06-30,
网络出版日期:2023-06,
移动端阅览
梁峻阁, 宋怡然, 孙杨帆, 等. 基于可穿戴与可植入技术的人体健康物联网研究进展[J]. 物联网学报, 2023,7(2):26-34.
JUNGE LIANG, YIRAN SONG, YANGFAN SUN, et al. Research progress of human health IoT based on wearable and implantable techniques. [J]. Chinese journal on internet of things, 2023, 7(2): 26-34.
梁峻阁, 宋怡然, 孙杨帆, 等. 基于可穿戴与可植入技术的人体健康物联网研究进展[J]. 物联网学报, 2023,7(2):26-34. DOI: 10.11959/j.issn.2096-3750.2023.00343.
JUNGE LIANG, YIRAN SONG, YANGFAN SUN, et al. Research progress of human health IoT based on wearable and implantable techniques. [J]. Chinese journal on internet of things, 2023, 7(2): 26-34. DOI: 10.11959/j.issn.2096-3750.2023.00343.
健康人群通过在日常生活中对各项生理参数进行监测,能够在疾病早期预警身体异常和疾病,从而提高个人生活质量,减轻国家公共卫生医疗资源压力,因此,亟须研发基于人体物联网的可穿戴与可植入传感器系统。以基于体液和电信号的生物信息检测为切入点划分传感技术,并引入自供能、近端通信等人体健康物联网的关键技术进行讨论。最后探讨了健康数据管理与疾病诊断预防领域的技术进展和产业应用,尝试构建了基于可穿戴与可植入技术的人体健康物联网概念。
Monitoring various physiological parameters in healthy people daily life can provide early warning of abnormalities and diseases
as well as reduce the pressure on national public health and medical resources.Hence
it is necessary to develop human health IoT system based on wearable and implantable sensors.The bioinformatics detection based on body fluids and electrical signals as the entry point was used to divide sensing technologies
and the key technologies such as self-powered and near-end communication for human health IoT were introduced for discussion.Finally
the technological progress and industrial application in the field of health data management and disease diagnosis and prevention were explored
and the concept of human health IoT based on wearable and implantable technologies was attempted to be constructed.
物联网可穿戴可植入柔性电子器件
IoTwearableimplantableflexible electronics
SHEN Y Z, SHEN S G, WU Z D ,et al. Signaling game-based availability assessment for edge computing-assisted IoT systems with malware dissemination[J]. Journal of Information Security and Applications, 2022(66): 103140.
LEMUS-ZÚÑIGALG , FÉLIXJM , FIDES-VALEROA ,et al. A proof-of-concept IoT system for remote healthcare based on interoperability standards[J]. Sensors (Basel,Switzerland), 2022,22(4): 1646.
TAWALBEH L, MUHEIDAT F, TAWALBEH M ,et al. Edge enabled IoT system model for secure healthcare[J]. Measurement, 2022(191): 110792.
IM T H, LEE J H, WANG H S ,et al. Flashlight-material interaction for wearable and flexible electronics[J]. Materials Today, 2021(51): 525-551.
LEUNG C M, CHEN X Q, WANG T ,et al. Enhanced electrome chanical response in PVDF-BNBT composite nanofibers for flexible sensor applications[J]. Materials (Basel,Switzerland), 2022,15(5): 1769.
ZHOU Z X, LIU K, BAN Z ,et al. Highly adhesive,self-healing,anti-freezing and anti-drying organohydrogel with self-power and mechanoluminescence for multifunctional flexible sensor[J]. Composites Part A:Applied Science and Manufacturing, 2022(154): 106806.
MCSHAN D, RAY P C, YU H . Molecular toxicity mechanism of nanosilver[J]. J Food Drug Anal, 2014,22(1): 116-127.
TU Z Y, MA Z, LI J A ,et al. Prospective on doping engineering of conductive polymers for enhanced interfacial properties[J]. Applied Physics Letters, 2021,119(15): 150504.
HEIKENFELD J, JAJACKA , ROGERS J ,et al. Wearable sensors:modalities,challenges,and prospects[J]. Lab on a Chip, 2018,18(2): 217-248.
VILELA D, ROMEO A, SÁNCHEZ S . Flexible sensors for biomedical technology[J]. Labona Chip, 2016,16(3): 402-408.
ZHANG H L, YANG Y HOU T . Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors[J]. Nano Energy, 2013,2(5): 1019-1024.
LIM Y W, JIN J, BAE B S . Optically transparent multiscale composite films for flexible and wearable electronics[J]. Advanced Materials (Deerfield Beach,Fla), 2020,32(35): e1907143.
KARTHIKEYAN V, SURJADI J U, WONG J C K ,et al. Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting[J]. Journal of Power Sources, 2020(455): 227983.
PRUNRT G , PAWULA F , FLEURY G ,et al. A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications[J]. Materials Today Physics, 2021(18): 100402.
HU G S, YI Z R, LU L J ,et al. Self-powered 5G NB-IoT system for remote monitoring applications[J]. Nano Energy, 2021,87:106140.
FANG Y, TANG T Y, LI Y F ,et al. A high-performance triboelectricelectromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor IoT applications[J]. iScience, 2021,24(4): 102300.
DE D, BHARTI P, DAS S K ,et al. Multimodal wearable sensing for fine-grained activity recognition in healthcare[J]. IEEE Internet Computing, 2015,19(5): 26-35.
王昭昭, 沈小清, 何细飞 ,等. 微信教育结合运动手环监测在心肌梗死患者康复运动的应用[J]. 护理学杂志, 2017,32(15): 8-10.
WANG Z Z, SHEN X Q, HE X F ,et al. Effect of exercises with sports bracelet combined with WeChat-based education on acute myocardial infarction patients[J]. Journal of Nursing Science, 2017,32(15): 8-10.
杨梅, 丛扬帆, 李雪瑞 . 融合 FAHP 和 TOPSIS 的适老化产品综合评价与优选方法:以老年智能手环为例[J]. 图学学报, 2020,41(3): 469-479.
YANG M, CONG Y F, LI X R . Comprehensive evaluation and optimization method of products for the elderly based on FAHP and TOPSIS—a case study on the smart bracelet for the elderly[J]. Journal of Graphics, 2020,41(3): 469-479.
LIN P H, SHEU S C, CHEN C W ,et al. Wearable hydrogel patch with noninvasive,electrochemical glucose sensor for natural sweat detection[J]. Talanta, 2022(241): 123187.
LI G, WANG K, WANG D ,et al. Noninvasive blood glucose detection system based on dynamic spectrum and M+N theory[J]. Analytica Chimica Acta, 2022(1201): 339635.
ZHU C H, XU Y F, CHEN Q D ,et al. A flexible electrochemical biosensor based on functionalized poly(3,4-ethylenedioxythiophene) film to detect lactate in sweat of the human body[J]. Journal of Colloid and Interface Science, 2022(617): 454-462.
ALORAYNANA , RASSELS , XU C ,et al. A single wavelength mid-infrared photoacoustic spectroscopy for noninvasive glucose detection using machine learning[J]. Biosensors, 2022,12(3): 166.
HAN Z P, ZHANG X Y, YUAN H ,et al. Graphene oxide/gold nanoparticle/graphite fiber microelectrodes for directing electron transfer of glucose oxidase and glucose detection[J]. Journal of Power Sources, 2022(521): 230956.
MA Y J, ZHANG Y C, CAI S S ,et al. Flexible hybrid electronics for digital healthcare[J]. Advanced Materials, 2020,32(15): 1902062.
VORA D, GARIMELLA H T, GERMAN C L ,et al. Microneedle and iontophoresis mediated delivery of methotrexate into and across healthy and psoriatic skin[J]. International Journal of Pharmaceutics, 2022(618): 121693.
ZHANG P P, ZHU J C, ZHAO B J ,et al. Wearable transdermal microneedle patch based on photonic crystal hydrogel for glucose monitoring[J]. Chinese Journal of Analytical Chemistry, 2022,50(4): 100054.
LI X, HUANG X, MO J ,et al. A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment[J]. Advanced Science (Weinheim,Baden-Wurttemberg,Germany), 2021,8(16): e2100827.
WANG P M, CORNWELL M, PRAUSNITZ M R . Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles[J]. Diabetes Technology & Therapeutics, 2005,7(1): 131-141.
CHEN Q Y, ZHAO Y, LIU Y Q . Current development in wearable glucose meters[J]. Chinese Chemical Letters, 2021,32(12): 3705-3717.
LEGNER C, KALWA U, PATEL V ,et al. Sweat sensing in the smart wearables era:towards integrative,multifunctional and bodycompliant perspiration analysis[J]. Sensors and Actuators A:Physical, 2019(296): 200-221.
CHO I J, KANG D, HAN S ,et al. Thin,soft,skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat[J]. Advanced Healthcare Materials, 2017,6(5).
CUI Y X, DUAN W, JIN Y ,et al. Ratiometric fluorescent nanohybrid for noninvasive and visual monitoring of sweat glucose[J]. ACS Sensors, 2020,5(7): 2096-2105.
LIU Y Q, YU Q, LUO X J ,et al. Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing[J]. Microsystems & Nanoengineering, 2021(7): 75.
KAMBLEA , GHARE P, KUMAR V . Machine-learning-enabled adaptive signal decomposition for a brain-computer interface using EEG[J]. Biomedical Signal Processing and Control, 2022(75): 103526.
ALLISON B Z, WOLPAW E W, WOLPAW J R . Brain-computer interface systems:progress and prospects[J]. Expert Review of Medical Devices, 2007,4(4): 463-474.
MCFARLAND D J, WOLPAW J R . EEG-based brain-computer interfaces[J]. Current Opinionin Biomedical Engineering, 2017(4): 194-200.
LIU G, WANG J . EEGG:an analytic brain-computer interface algorithm[J]. IEEE Transactionson Neural Systemsand Rehabilitation Engineering, 2022(30): 643-655.
HU H, HUANG H, XIA L ,et al. Engineering vanadium carbide MXene as multienzyme mimetics for efficient in vivo ischemic stroke treatment[J]. Chemical Engineering Journal, 2022(440): 135810.
STACK E, AGARWAL V, KING R ,et al. Identifying balance impairments in people with Parkinson’s disease using video and wearable sensors[J]. Gait & Posture, 2018(62): 321-326.
SALEHZADEH A, CALITZ A P, GREYLING J . Human activity recognition using deep electroencephalography learning[J]. Biomedical Signal Processing and Control, 2020(62): 102094.
WAGNER J, MARTINEZ-CANCINO R,, DELORME A ,et al. High-density EEG mobile brain/body imaging data recorded during a challenging auditory gait pacing task[J]. Scientific Data, 2019(6): 211.
LIANG J G, LEE D, YOUNS E ,et al. Electroencephalography network effects of corpus callosotomy in patients with lennox-gastaut syndrome[J]. Frontiers in Neurology, 2017(8): 456.
LIANG J G, KIM N Y, KOA ,et al. Changes in functional brain network topology after successful and unsuccessful corpus callosotomy for lennox-gastaut syndrome[J]. Scientific Reports, 2018,8:3414.
PISARCHIK A N, MAKSIMENKO V A, HRAMOV A E . From novel technology to novel applications:comment on an integrated brain-machine interface platform with thousands of channels by elon musk and neuralink[J]. Journal of Medical Internet Research, 2019,21(10): e16356.
STARR P A . Totally implantable bidirectional neural prostheses:a flexible platform for innovation in neuromodulation[J]. Frontiers in Neuroscience, 2018(12): 619.
KOYDEMIR H C, OZCAN A . Wearable and implantable sensors for biomedical applications[J]. Annual Review of Analytical Chemistry (PaloAlto,Calif), 2018,11(1): 127-146.
LANDE R G, POURZAND M . WITHDRAWN:brain computer interface technology:usability and applications in psychiatry[J]. Technology and Health Care:Official Journal of the European Society for Engineering and Medicine, 2015: 1-4.
LE BARS S, CHOKRON S, BALP R ,et al. Theoretical perspective on an ideomotor brain-computer interface:toward a naturalistic and non-invasive brain-computer interface paradigm based on action-effect representation[J]. Frontiers in Human Neuroscience, 2021(15): 732764.
RENTON A I, MATTINGLEY J B, PAINTER D R . Optimising non-invasive brain-computer interface systems for free communication between naïve human participants[J]. Scientific Reports, 2019(9): 18705.
JOCHUMSEN M, AL MUHAMMADEE JANJUA T, ARCEO J C ,et al. Induction of neural plasticity using a low-cost open source brain-computer interface and a 3D-printed wrist exoskeleton[J]. Sensors, 2021,21(2): 572.
LUO Z, PENG B, ZENG J ,et al. Sub-thermionic,ultra-high-gain organic transistors and circuits[J]. Nat Commun, 2021,12(1): 1928.
LOE M E, MORRISSEY M J, TOMKOSR ,et al. Detecting slow narrowband modulation in EEG signals[J]. Journal of Neuroscience Methods, 2022(378): 109660.
PRASAD D S, CHANAMALLU S R, PRASAD K S . Optimized deformable convolution network for detection and mitigation of ocular artifacts from EEG signal[J]. Multimedia Tools and Applications, 2022,81(21): 30841-30879.
LI M M, LIANG Y, YANG L F ,et al. Automatic bad channel detection in implantable brain-computer interfaces using multimodal features based on local field potentials and spike signals[J]. Computers in Biology and Medicine, 2020,116:103572.
LIMG B . Smart watch detection of left ventricular dysfunction[J]. Nature Reviews Cardiology, 2023,20(2): 75.
WANG M Q, YANG Y R, MIN J H ,et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients[J]. Nature Biomedical Engineering, 2022,6(11): 1225-1235.
YING S, ZHANG J H, YAN K ,et al. Self-powered direct-current type pressure sensor by polypyrrole/met al Schottky junction[J]. Journal of Physics D:Applied Physics, 2021,54(42): 424008.
LI L L, PAN L J, MA Z ,et al. All inkjet-printed amperometric multiplexed biosensors based on nanostructured conductive hydrogel electrodes[J]. Nano Letters, 2018,18(6): 3322-3327.
STEVNER A B A, VIDAURRE D, CABRAL J ,et al. Discovery of key whole-brain transitions and dynamics during human wakefulness and non-REM sleep[J]. Nature Communications, 2019,10:1035.
CHEN L Y, TEE B C K, CHORTOS A L ,et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care[J]. Nature Communications, 2014(5): 5028.
WANG C, CAI Y Y, ZHOU W ,et al. A wearable respiration sensor for real-time monitoring of chronic kidney disease[J]. ACS Applied Materials & Interfaces, 2022,14(10): 12630-12639.
SHANEFIELD S C, KELLY M N, POSA M . Wearable technology leads to initial workup of Graves' disease in an adolescent female[J]. The Journal of Adolescent Health:Official Publication of the Society for Adolescent Medicine, 2022,71(3): 370-372.
KOO J H, SONG J K, YOO S ,et al. Unconventional device and material approaches for monolithic biointegration of implantable sensors and wearable electronics[J]. Advanced Materials Technologies, 2020,5(10): 2000407.
TEHRANI F, TEYMOURIAN H, WUERSTLE B ,et al. An integrated wearable microneedle array for the continuous monitoring of multiple biomarkers in interstitial fluid[J]. Nature Biomedical Engineering, 2022,6(11): 1214-1224.
0
浏览量
422
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构