浏览全部资源
扫码关注微信
1. 北京交通大学高速铁路网络管理教育部工程研究中心,北京 100044
2. 北京交通大学计算机与信息技术学院,北京 100044
3. 国网能源研究院有限公司,北京 102209
[ "吴彤(1997- ),女,北京交通大学计算机与信息技术学院硕士生,主要研究方向为室内定位" ]
[ "李业深(2000- ),男,北京交通大学计算机与信息技术学院硕士生,主要研究方向为人工智能、高铁无线通信等" ]
[ "黄镇煌(1998- ),男,北京交通大学计算机与信息技术学院硕士生,主要研究方向为网络智能与移动计算、联邦学习" ]
[ "张煜(1983- ),男,博士,国网能源研究院有限公司高级研究员,主要研究方向为边缘计算、无线协作网络和能源互联网等" ]
[ "张万乐(1998- ),男,北京交通大学计算机与信息技术学院博士生,主要研究方向为机器学习、移动和云计算、无线通信网络" ]
[ "熊轲(1981- ),男,博士,北京交通大学计算机与信息技术学院教授、副院长,主要研究方向为人工智能+5G/6G网络、无线大数据分析与处理、AI 赋能的移动网络优化设计、绿色智慧物联网、网络大数据分析、雾计算/边缘计算、室内定位、基于无线大数据的人体姿态识别等" ]
纸质出版日期:2023-12-20,
网络出版日期:2023-12,
移动端阅览
吴彤, 李业深, 黄镇煌, 等. 一种行人遮挡下的UWB非视距传播识别方法[J]. 物联网学报, 2023,7(4):63-71.
TONG WU, YESHEN LI, ZHENHUANG HUANG, et al. A UWB NLOS identification method under pedestrian occlusion. [J]. Chinese journal on internet of things, 2023, 7(4): 63-71.
吴彤, 李业深, 黄镇煌, 等. 一种行人遮挡下的UWB非视距传播识别方法[J]. 物联网学报, 2023,7(4):63-71. DOI: 10.11959/j.issn.2096-3750.2023.00348.
TONG WU, YESHEN LI, ZHENHUANG HUANG, et al. A UWB NLOS identification method under pedestrian occlusion. [J]. Chinese journal on internet of things, 2023, 7(4): 63-71. DOI: 10.11959/j.issn.2096-3750.2023.00348.
超宽带(UWB
ultrawideband)技术带宽大、抗干扰能力强、多径分辨率高,是室内定位的热点技术。然而由于室内环境复杂,UWB 信号传播不可避免会受到遮挡,产生非视距(NLOS
non-line-of-sight)传播,极大降低了UWB定位的精度。因此,准确识别出NLOS数据,将其进行剔除或矫正,对缓解定位精度下降问题有重要的作用。现有NLOS识别工作多数聚焦于墙体等建筑结构遮挡的场景,行人遮挡的场景需要进一步讨论。由于人体遮挡对信号的影响复杂且不可忽略,针对行人遮挡下的UWB非视距传播识别问题进行研究。综合比较多种机器学习方法和信号特征组合,提出了一种基于第一路径信号功率、总接收信号功率和测量距离三维特征的随机森林方法,使用较少维度的特征达到了良好的NLOS识别效果。基于不同实测数据的实验结果表明,采用所提三维特征的随机森林方法在3组不同数据集上的NLOS识别准确率分别达到了99.05%、99.32%和98.81%。
Ultrawideband (UWB) is a hot technology for indoor positioning with large bandwidth
strong anti-interference ability
and high multipath resolution capacity.However
due to the complex indoor environment
UWB signal propagation will inevitably be blocked
resulting in non-line-of-sight (NLOS) propagation
which greatly reduces the accuracy of UWB positioning.Therefore
identifying NLOS signals accurately and discarding or correcting them are important to alleviate the problem of the decline in positioning accuracy.The majority of present NLOS identification work focuses on scenes with building structures such as walls.Further discussion is needed for scenes obscured by pedestrians.Since the impact of human obstacles on the signals is more complex and cannot be ignored
the NLOS identification under pedestrian occlusion was studied.By comparing a variety of machine learning methods and signal feature combinations
the random forest method based on the three-dimensional features of the first path signal power
the received signal power
and the measured distance was proposed.These features with fewer dimensions and easy extraction were used to achieve a high identification percentage for NLOS.The experimental results based on the measured data of different devices show that the NLOS identification accuracy based on the proposed method reaches 99.05%
99.32% and 98.81% respectively.
UWB室内定位非视距识别随机森林
UWBindoor positioningNLOS identificationrandom forest
BIANCHI V, CIAMPOLINI P, DE M I . RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes[J]. IEEE Transactions on Instrumentation and Measurement, 2019,68(2): 566-575.
MAINETTI L, PATRONO L, SERGI I . A survey on indoor positioning systems[C]// Proceedings of 2014 22nd International Conference on Software,Telecommunications and Computer Networks (SoftCOM). Piscataway:IEEE Press, 2015: 111-120.
ALARIFI A, AL-SALMAN A, ALSALEH M ,et al. Ultra wideband indoor positioning technologies:analysis and recent advances[J]. Sensors (Basel,Switzerland), 2016,16(5): 707.
FONTANA R J . Recent system applications of short-pulse ultra-wideband (UWB) technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2004,52(9): 2087-2104.
ZAFARI F, GKELIAS A, LEUNG K K . A survey of indoor localization systems and technologies[J]. IEEE Communications Surveys &Tutorials, 2019,21(3): 2568-2599.
SOGANCI H, GEZICI S, POOR H V . Accurate positioning in ultra-wideband systems[J]. IEEE Wireless Communications, 2011,18(2): 19-27.
LIU H, DARABI H, BANERJEE P ,et al. Survey of wireless indoor positioning techniques and systems[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part C (Applications and Reviews), 2007,37(6): 1067-1080.
VENKATESH S, BUEHRER R M . NLOS mitigation using linear programming in ultrawideband location-aware networks[J]. IEEE Transactions on Vehicular Technology, 2007,56(5): 3182-3198.
KHODJAEV J, PARK Y, MALIK A S . Survey of NLOS identification and error mitigation problems in UWB-based positioning algorithms for dense environments[J]. Annals of Telecommunications - Annales Des Télécommunications, 2010,65(5): 301-311.
NESSA A, ADHIKARI B, HUSSAIN F ,et al. A survey of machine learning for indoor positioning[J]. IEEE Access, 2020(8): 214945-214965.
KRISTENSEN J B, MASSANET G M, JENSEN O K ,et al. Non-line-of-sight identification for UWB indoor positioning systems using support vector machines[C]// Proceedings of 2019 IEEE MTT-S International Wireless Symposium (IWS). Piscataway:IEEE Press, 2019: 1-3.
BARRAL V, ESCUDERO C J, GARCÍA-NAYA J A, ,et al. NLOS identification and mitigation using low-cost UWB devices[J]. Sensors, 2019,19(16): 3464.
MARANÒ S, GIFFORD W M, WYMEERSCH H ,et al. NLOS identification and mitigation for localization based on UWB experimental data[J]. IEEE Journal on Selected Areas in Communications, 2010,28(7): 1026-1035.
LI W J, ZHANG T T, ZHANG Q Y . Experimental researches on an UWB NLOS identification method based on machine learning[C]// Proceedings of 2013 15th IEEE International Conference on Communication Technology. Piscataway:IEEE Press, 2014: 473-477.
RAMADAN M, SARK V, GUTIERREZ J ,et al. NLOS identification for indoor localization using random forest algorithm[C]// Proceedings of 22nd International ITG Workshop on Smart Antennas.[S.l.:s.n.], 2018: 1-5.
JIANG C H, SHEN J C, CHEN S ,et al. UWB NLOS/LOS classification using deep learning method[J]. IEEE Communications Letters, 2020,24(10): 2226-2230.
ZHU Y P, XIA W W, YAN F ,et al. NLOS identification via AdaBoost for wireless network localization[J]. IEEE Communications Letters, 2019,23(12): 2234-2237.
OLEJNICZAK A, BLASZKIEWICZ O, CWALINA K K ,et al. Deep learning approach for LOS and NLOS identification in the indoor environment[C]// Proceedings of 2020 Baltic URSI Symposium (URSI). Piscataway:IEEE Press, 2020: 104-107.
WU C, HOU H W, WANG W J ,et al. TDOA based indoor positioning with NLOS identification by machine learning[C]// Proceedings of 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP). Piscataway:IEEE Press, 2018: 1-6.
KILIÇ Y, ALI A J, MEIJERINK A ,et al. The effect of human-body shadowing on indoor UWB TOA-based ranging systems[C]// Proceedings of 2012 9th Workshop on Positioning,Navigation and Communication. Piscataway:IEEE Press, 2012: 126-130.
何杰, 吴雅南, 段世红 ,等. 人体对UWB测距误差影响模型[J]. 通信学报, 2017,38(S1): 58-66.
HE J, WU Y N, DUAN S H ,et al. Model of human body influence on UWB ranging error[J]. Journal on Communications, 2017,38(S1): 58-66.
LI X F, HE J, XU L Y ,et al. The effect of multipath and NLOS on TOA ranging error and energy based on UWB[C]// Proceedings of 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). Piscataway:IEEE Press, 2016: 1-2.
NAM S C, CHOI H B, KO Y B . On mitigation of ranging errors for through-the-body NLOS conditions using convolutional neural networks[C]// Proceedings of 2022 24th International Conference on Advanced Communication Technology (ICACT). Piscataway:IEEE Press, 2022: 141-144.
CWALINA K K, OLEJNICZAK A, BLASZKIEWICZ O ,et al. Fast fading influence on the deep learning-based LOS and NLOS identification in wireless body area networks[C]// Proceedings of 2021 34th General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). Piscataway:IEEE Press, 2021: 1-4.
BHARADWAJ R, ALOMAINY A, KOUL S K . Experimental investigation of body-centric indoor localization using compact wearable antennas and machine learning algorithms[J]. IEEE Transactions on Antennas and Propagation, 2022,70(2): 1344-1354.
FERREIRA A G, FERNANDES D, BRANCO S ,et al. Feature selection for real-time NLOS identification and mitigation for bodymounted UWB transceivers[J]. IEEE Transactions on Instrumentation and Measurement, 2021(70): 1-10.
CWALINA K K, RAJCHOWSKI P, BLASZKIEWICZ O ,et al. Deep learning-based LOS and NLOS identification in wireless body area networks[J]. Sensors, 2019,19(19): 4229.
WEI J Y, WANG H, SU S ,et al. NLOS identification using parallel deep learning model and time-frequency information in UWB-based positioning system[J]. Measurement, 2022(195): 111191.
KOLAKOWSKI M, MODELSKI J . First path component power based NLOS mitigation in UWB positioning system[C]// Proceedings of 2017 25th Telecommunication Forum (TELFOR). Piscataway:IEEE Press, 2018: 1-4.
GURURAJ K, RAJENDRA A K, SONG Y ,et al. Real-time identification of NLOS range measurements for enhanced UWB localization[C]// Proceedings of 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN). Piscataway:IEEE Press, 2017: 1-7.
LinkTrack datasheet[EB]. 2021.
Decawave Ltd. DWI000 USER MANUAL[EB]. 2017.
ALBAIDHANI A, MORELL A, VICARIO J L . Ranging in UWB using commercial radio modules:experimental validation and NLOS mitigation[C]// Proceedings of 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN). Piscataway:IEEE Press, 2016: 1-7.
KIM D H, KWON G R, PYUN J Y ,et al. NLOS identification in UWB channel for indoor positioning[C]// Proceedings of 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC). Piscataway:IEEE Press, 2018: 1-4.
王奕森, 夏树涛 . 集成学习之随机森林算法综述[J]. 信息通信技术, 2018,12(1): 49-55.
WANG Y S, XIA S T . A survey of random forests algorithms[J]. Information and Communications Technologies, 2018,12(1): 49-55.
方匡南, 吴见彬, 朱建平 ,等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011,26(3): 32-38.
FANG K N, WU J B, ZHU J P ,et al. A review of technologies on random forests[J]. Statistics & Information Forum, 2011,26(3): 32-38.
0
浏览量
94
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构