浏览全部资源
扫码关注微信
1.南京邮电大学通信与信息工程学院,江苏 南京 210003
2.南京邮电大学江苏省无线通信重点实验室,江苏 南京 210003
3.陕西师范大学物理学与信息技术学院,陕西 西安 710119
[ "夏文超(1991‒ ),男,博士,南京邮电大学副教授,主要研究方向为边缘智能无线通信、通感一体化、大规模MIMO等。" ]
[ "徐婧(1999‒ ),女,南京邮电大学硕士生,主要研究方向为工业互联网、超高可靠低时延通信等。" ]
[ "周星光(1997‒ ),男,南京邮电大学通信与信息工程学院博士生,主要研究方向为超高可靠低时延通信、短包传输、大规模MIMO和信道估计理论。" ]
[ "吴伟华(1988‒ ),男,博士,陕西师范大学副研究员,主要研究方向为无线资源分配、人工智能、随机网络优化及其在LTE-U网络中的应用。" ]
[ "赵海涛(1983‒ ),男,博士,南京邮电大学通信与信息工程学院副院长、教授、博士生导师,主要研究方向为物联网、车联网、智能网络、多媒体信道建模、容量预测和无线网络编码等。" ]
纸质出版日期:2024-06-10,
收稿日期:2023-06-25,
修回日期:2024-06-15,
移动端阅览
夏文超,徐婧,周星光等.面向工业物联网场景下行短包传输的叠加导频功率优化[J].物联网学报,2024,08(02):16-25.
XIA Wenchao,XU Jing,ZHOU Xingguang,et al.Power optimization of superimposed pilot for downlink short-packet transmission in IIoT[J].Chinese Journal on Internet of Things,2024,08(02):16-25.
夏文超,徐婧,周星光等.面向工业物联网场景下行短包传输的叠加导频功率优化[J].物联网学报,2024,08(02):16-25. DOI: 10.11959/j.issn.2096-3750.2024.00372.
XIA Wenchao,XU Jing,ZHOU Xingguang,et al.Power optimization of superimposed pilot for downlink short-packet transmission in IIoT[J].Chinese Journal on Internet of Things,2024,08(02):16-25. DOI: 10.11959/j.issn.2096-3750.2024.00372.
工业物联网在实现自动化和智能化生产方面具有巨大的潜力,但现有无线网络难以满足工业控制场景中的低时延、高可靠通信需求。基于此,研究了工业物联网下行短包传输场景中叠加导频(superimposed pilot,SP)功率分配问题,推导了可达传输速率在非完美信道状态信息和最大比发送下的闭合表达式的下限。进一步建立了下行加权和速率最大化问题,并利用逐次凸逼近法将该问题转化为几何规划问题来优化导频和数据功率分配。仿真结果表明所提SP模式下功率优化方案在短包传输中的优越性。
The industrial internet of things (IIoT) has great potential in achieving automation and intelligent production. However
existing networks struggle to meet the low-latency and high-reliability communication requirements in industrial control scenarios. Motivated by this fact
the power allocation problem of superimposed pilot (SP) for downlink short-packet transmission in IIoT was studied and a lower bound for achievable transmission rates with imperfect channel state information and maximum ratio transmission was derived. Furthermore
the downlink weighted sumrate maximization problem was formulated and transformed into a geometric programming problem aiming to optimize pilot and data power allocation via successive convex approximation method. Simulation results demonstrate the superiority of the proposed power optimization scheme of SP in short-packet transmission.
工业物联网叠加导频短包传输功率分配
IIoTsuperimposed pilotshort-packet transmissionpower allocation
MUNIRATHINAM S. Industry 4.0: industrial internet of things (IIOT)[M]//Advances in Computers. Amsterdam: Elsevier, 2020: 129-164.
A AJITH KUMAR S, OVSTHUS K, KRISTENSEN L M. An industrial perspective on wireless sensor networks:a survey of requirements, protocols, and challenges[J]. IEEE Communications Surveys & Tutorials, 2014, 16(3): 1391-1412.
POPOVSKI P, STEFANOVIĆ Č, NIELSEN J J, et al. Wireless access in ultra-reliable low-latency communication (URLLC)[J]. IEEE Transactions on Communications, 2019, 67(8): 5783-5801.
REN H, PAN C H, DENG Y S, et al. Joint power and blocklength optimization for URLLC in a factory automation scenario[J]. IEEE Transactions on Wireless Communications, 2020, 19(3): 1786-1801.
XIE Y C, REN P Y, XU D Y, et al. Optimizing training and transmission overheads of URLLC in industrial IoT networks[C]//Proceedings of 2020 IEEE Globecom Workshops GC Wkshps). Piscataway: IEEE Press, 2020: 1-6.
PENG Q H, REN H, PAN C H, et al. Resource allocation for Cell-free massive mimo enabled urllc downlink systems[C]//Proceedings of 2022 IEEE/CIC International Conference on Communications in China (ICCC). Piscataway: IEEE Press, 2022: 838-843.
PENG Q H, REN H, PAN C H, et al. Resource allocation for uplink cell-free massive MIMO enabled URLLC in a smart factory[J]. IEEE Transactions on Communications, 2023, 71(1): 553-568.
HOEHER P, TUFVESSON F. Channel estimation with superimposed pilot sequence[C]//Proceedings of the Seamless Interconnection for Universal Services. Global Telecommunications Conference. Piscataway: IEEE Press, 1999: 2162-2166.
ZHANG Y, ZHAO H T, XIA W C, et al. Superimposed pilot transmission in cell-free massive MIMO with non-ideal RF responses[J]. IEEE Transactions on Vehicular Technology, 2022, 71(12): 12856-12868.
VERENZUELA D, BJÖRNSON E, SANGUINETTI L. Spectral and energy efficiency of superimposed pilots in uplink massive MIMO[J]. IEEE Transactions on Wireless Communications, 2018, 17(11): 7099-7115.
ZHANG H, GAO S, LI D, et al. On superimposed pilot for channel estimation in multicell multiuser MIMO uplink: large system analysis[J]. IEEE Transactions on Vehicular Technology, 2016, 65(3): 1492-1505.
TEETI M A, WANG R, ABDOLEE R. On the uplink achievable rate for massive MIMO with 1-bit ADC and superimposed pilots[J]. IEEE Access, 2018, 6: 37627-37643.
VERENZUELA D, BJOERNSON E, SANGUINETTI L. Joint UL and DL spectral efficiency optimization of superimposed pilots in massive MIMO[C]//Proceedings of 2017 IEEE Globecom Workshops (GC Wkshps). Piscataway: IEEE Press, 2017: 1-7.
UPADHYA K, VOROBYOV S A, VEHKAPERA M. Superimposed pilots are superior for mitigating pilot contamination in massive MIMO[J]. IEEE Transactions on Signal Processing, 2017, 65(11): 2917-2932.
VERENZUELA D, BERGSTRÖM A, BJÖRNSON E. Optimal power control for superimposed pilots in uplink massive MIMO systems[C]//Proceedings of 2018 52nd Asilomar Conference on Signals, Systems, and Computers. Piscataway: IEEE Press, 2018: 499-503.
ZHOU X G, XIA W C, ZHANG Q, et al. Power allocation of superimposed pilots for URLLC with short-packet transmission in IIoT[J]. IEEE Wireless Communications Letters, 2022, 11(11): 2365-2369.
MEHANNA O, HUANG K J, GOPALAKRISHNAN B, et al. Feasible point pursuit and successive approximation of non-convex QCQPs[J]. IEEE Signal Processing Letters, 2015, 22(7): 804-808.
VAN CHIEN T, BJÖRNSON E, LARSSON E G. Joint pilot design and uplink power allocation in multi-cell massive MIMO systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 2000-2015.
NGO H Q, ASHIKHMIN A, YANG H, et al. Cell-free massive MIMO versus small cells[J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1834-1850.
SENGIJPTA S K. Fundamentals of statistical signal processing: estimation theory[J]. Technometrics, 1995, 37(4): 465-466.
SHANNON C E. A mathematical theory of communication[J].Bell Systems Technical Journal, 1948, 27(4):623-656.
POLYANSKIY Y, POOR H V, VERDU S. Channel coding rate in the finite blocklength regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307-2359.
INTERDONATO G, KARLSSON M, BJÖRNSON E, et al. Local partial zero-forcing precoding for cell-free massive MIMO[J]. IEEE Transactions on Wireless Communications, 2020, 19(7): 4758-4774.
ZHANG J Y, BJÖRNSON E, MATTHAIOU M, et al. Prospective multiple antenna technologies for beyond 5G[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1637-1660.
ZHANG J Y, WEI Y H, BJÖRNSON E, et al. Performance analysis and power control of cell-free massive MIMO systems with hardware impairments[J]. IEEE Access, 2018, 6: 55302-55314.
LUO L R, ZHANG J Y, CHEN S F, et al. Downlink power control for cell-free massive MIMO with deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2022, 71(6): 6772-6777.
BOYD S, KIM S J, VANDENBERGHE L, et al. A tutorial on geometric programming[J]. Optimization and Engineering, 2007, 8(1): 67-127.
CHIANG M, TAN C W, PALOMAR D P, et al. Power control by geometric programming[J]. IEEE Transactions on Wireless Communications, 2007, 6(7): 2640-2651.
PAN C H, ZHU H L, GOMES N J, et al. Joint user selection and energy minimization for ultra-dense multi-channel C-RAN with incomplete CSI[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(8): 1809-1824.
3GPP technical specification group radio access network. Further advancements for E-UTRA physical layer aspects (Release 9)[R]. 3GPP TS 36.814 V9.0.0, 2010.
DAZA L, MISRA S. Fundamentals of massive MIMO[J]. IEEE Wireless Communications, 2018, 25(1): 9.
0
浏览量
28
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构