浏览全部资源
扫码关注微信
1.南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院,江苏 南京 210023
2.南京邮电大学射频集成与微组装技术国家地方联合工程实验室,江苏 南京 210023
[ "钱慕君(1986‒ )女,博士,南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院讲师,主要研究方向为物理层安全技术、无线携能通信、智能反射面等。" ]
[ "虞舜驰(1998‒ )男,南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院硕士生,主要研究方向为毫米波大规模MIMO通信、智能反射面等。" ]
[ "刘陈(1963‒ )男,博士,南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院教授、博士生导师,主要研究方向为无线通信中的空时信号传输与处理算法、大规模MIMO通信、流形学习与流形优化等。" ]
[ "宋云超(1988‒ )男,博士,南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院副教授、硕士生导师,主要研究方向为5G/6G无线通信信号处理。" ]
[ "陆峰(1978‒ )男,博士,南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院副教授,主要研究方向为通信信号处理。" ]
纸质出版日期:2024-12-10,
收稿日期:2023-07-26,
修回日期:2024-08-19,
移动端阅览
钱慕君, 虞舜驰, 刘陈, 等. 基于流形学习的RIS辅助大规模MIMO系统的CSI反馈研究[J]. 物联网学报, 2024,8(4):167-176.
QIAN MUJUN, YU SHUNCHI, LIU CHEN, et al. Research on CSI feedback of RIS-assisted massive MIMO system based on manifold learning. [J]. Chinese journal on internet of things, 2024, 8(4): 167-176.
钱慕君, 虞舜驰, 刘陈, 等. 基于流形学习的RIS辅助大规模MIMO系统的CSI反馈研究[J]. 物联网学报, 2024,8(4):167-176. DOI: 10.11959/j.issn.2096-3750.2024.00374.
QIAN MUJUN, YU SHUNCHI, LIU CHEN, et al. Research on CSI feedback of RIS-assisted massive MIMO system based on manifold learning. [J]. Chinese journal on internet of things, 2024, 8(4): 167-176. DOI: 10.11959/j.issn.2096-3750.2024.00374.
针对频分双工(FDD
frequency-division duplexing)模式下可重构智能反射面(RIS
reconfigurable intelligent surface)辅助的多用户大规模多输入多输出(MIMO
multiple-input multiple-output)系统信道反馈开销大的问题,提出了一种基于流形学习的信道状态信息(CSI
channel state information)反馈框架。该框架首先通过简化CSI反馈过程实现初步的反馈开销降低,然后结合流形学习思想训练两组字典,从而实现增量CSI的降维和重构,最后在基站端恢复原始信道。仿真结果表明,在多用户和有限散射环境下,所提的CSI反馈方案与现有的方法相比具有更低的开销和复杂度,而且重构质量得到显著提高。
To solve the problem of high feedback overhead in a multi-user massive multiple-input multiple-output (MIMO) system assisted by a reconfigurable intelligent surface (RIS) in frequency-division duplexing (FDD) mode
a channel state information (CSI) feedback framework based on manifold learning was proposed. Firstly
the framework achieved initial feedback overhead reduction by simplifying the CSI feedback process. Then
the framework combined the manifold learning to train two set of dictionaries to achieve dimension reduction and reconstruction of incremental CSI. Finally
the original channel was restored at the base station. The simulation results show that the CSI feedback scheme proposed in this paper has lower overhead and complexity than the existing methods in the multi-user and limited scattering environment
and the reconstruction quality is significantly improved.
大规模MIMO频分双工智能反射面信道反馈流形学习
massive MIMOFDDRISchannel feedbackmanifold learning
LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014, 52(2): 186-195.
MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590-3600.
WANG B L, GAO F F, JIN S, et al. Spatial- and frequency-wideband effects in millimeter-wave massive MIMO systems[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3393-3406.
ZHANG Z Q, XIAO Y, MA Z, et al. 6G wireless networks: vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28-41.
WU Q Q, ZHANG S W, ZHENG B X, et al. Intelligent reflecting surface-aided wireless communications: a tutorial[J]. IEEE Transactions on Communications, 2021, 69(5): 3313-3351.
WIJEKOON D, MEZGHANI A, HOSSAIN E. Beamforming optimization in RIS-aided mimo systems under multiple-reflection effects[C]//Proceedings of the ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE Press, 2023: 1-5.
RAGHAVAN V, HEATH R W, SAYEED A M. Systematic codebook designs for quantized beamforming in correlated MIMO channels[J]. IEEE Journal on Selected Areas in Communications, 2007, 25(7): 1298-1310.
KUO P H, KUNG H T, TING P G. Compressive sensing based channel feedback protocols for spatially-correlated massive antenna arrays[C]//Proceedings of the 2012 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE Press, 2012: 492-497.
WANG Y R, LIU A J, XIA X C, et al. Learning the structured sparsity: 3-D massive MIMO channel estimation and adaptive spatial interpolation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 10663-10678.
KYRITSI P, COX D C, VALENZUELA R A, et al. Correlation analysis based on MIMO channel measurements in an indoor environment[J]. IEEE Journal on Selected Areas in Communications, 2003, 21(5): 713-720.
SHEN D C, DAI L L. Channel feedback for reconfigurable intelligent surface assisted wireless communications[C]//Proceedings of the GLOBECOM 2020 - 2020 IEEE Global Communications Conference. Piscataway: IEEE Press, 2020: 1-5.
SHEN D C, DAI L L. Dimension reduced channel feedback for reconfigurable intelligent surface aided wireless communications[J]. IEEE Transactions on Communications, 2021, 69(11): 7748-7760.
SHIN B S, OH J H, YOU Y H, et al. Limited channel feedback scheme for reconfigurable intelligent surface assisted MU-MIMO wireless communication systems[J]. IEEE Access, 2022, 10: 50288-50297.
LOVE D J, HEATH R W, LAU V K N, et al. An overview of limited feedback in wireless communication systems[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(8): 1341-1365.
LIU Z Y, DEL ROSARIO M, DING Z. A Markovian model-driven deep learning framework for massive MIMO CSI feedback[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1214-1228.
CUI Y D, GUO A H, SONG C L. TransNet: full attention network for CSI feedback in FDD massive MIMO system[J]. IEEE Wireless Communications Letters, 2022, 11(5): 903-907.
ZENG J, HE Z R, SUN J L, et al. Deep transfer learning for 5G massive MIMO downlink CSI feedback[C]//Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC). Piscataway: IEEE Press, 2021: 1-5.
JI S J, LI M. CLNet: complex input lightweight neural network designed for massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2021, 10(10): 2318-2322.
CAO Z, SHIH W T, GUO J J, et al. Lightweight convolutional neural networks for CSI feedback in massive MIMO[J]. IEEE Communications Letters, 2021, 25(8): 2624-2628.
WEN C K, SHIH W T, JIN S. Deep learning for massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2018, 7(5): 748-751.
陈慕涵, 郭佳佳, 李潇, 等. 基于深度学习的大规模MIMO信道状态信息反馈[J]. 物联网学报, 2020, 4(1): 33-44.
CHEN M H, GUO J J, LI X, et al. An overview of the CSI feedback based on deep learning for massive MIMO systems[J]. Chinese Journal on Internet of Things, 2020, 4(1): 33-44.
廖勇, 姚海梅, 花远肖. 一种基于深度学习的物联网信道状态信息获取算法[J]. 物联网学报, 2019, 3(1): 8-13.
LIAO Y, YAO H M, HUA Y X. Channel state information acquisition algorithm based on deep learning for IoT[J]. Chinese Journal on Internet of Things, 2019, 3(1): 8-13.
张阳阳, 张席畅, 刘毅. 面向大规模MIMO信道信息反馈的模型驱动轻量化神经网络[J]. 信号处理, 2023, 39(3): 381-389.
ZHANG Y Y, ZHANG X C, LIU Y. Model-driven lightweight network for CSI feedback in massive MIMO[J]. Journal of Signal Processing, 2023, 39(3): 381-389.
CAO Y D, YIN H F, HE G N, et al. Manifold learning-based CSI feedback in massive MIMO systems[C]//Proceedings of the ICC 2022-IEEE International Conference on Communications. Piscataway: IEEE Press, 2022: 225-230.
ZHAO Z, FENG G C, ZHU J H, et al. Manifold learning: dimensionality reduction and high dimensional data reconstruction via dictionary learning[J]. Neurocomputing, 2016, 216: 268-285.
SEJAN M A S, RAHMAN M H, SHIN B S, et al. Machine learning for intelligent-reflecting-surface-based wireless communication towards 6G: a review[J]. Sensors, 2022, 22(14): 5405.
MEIJERINK A, MOLISCH A F. On the physical interpretation of the Saleh-Valenzuela model and the definition of its power delay profiles[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(9): 4780-4793.
EL AYACH O, RAJAGOPAL S, ABU-SURRA S, et al. Spatially sparse precoding in millimeter wave MIMO systems[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1499-1513.
WEI X H, SHEN D C, DAI L L. Channel estimation for RIS assisted wireless communications: Part I: fundamentals, solutions, and future opportunities[J]. IEEE Communications Letters, 2021, 25(5): 1398-1402.
DJEBRA Y, MARIN T, HAN P K, et al. Manifold learning via linear tangent space alignment (LTSA) for accelerated dynamic MRI with sparse sampling[J]. IEEE Transactions on Medical Imaging, 2023, 42(1): 158-169.
ZHANG Z Y, ZHA H Y. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. Journal of Shanghai University (English Edition), 2004, 8(4): 406-424.
SHEN W Q, DAI L L, SHIM B, et al. Channel feedback based on AoD-adaptive subspace codebook in FDD massive MIMO systems[J]. IEEE Transactions on Communications, 2018, 66(11): 5235-5248.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构