浏览全部资源
扫码关注微信
1.南京邮电大学通信与信息工程学院,江苏 南京 210003
2.南京邮电大学物联网学院,江苏 南京 210003
3.南京邮电大学计算机学院,江苏 南京 210023
[ "胡海峰(1973‒ ),男,博士,南京邮电大学通信与信息工程学院教授,主要研究方向为人工智能、网络信息处理等。" ]
[ "张熙(1999‒ ),男,南京邮电大学通信与信息工程学院硕士生,主要研究方向为联邦学习、模型剪枝、移动边缘计算等。" ]
[ "赵海涛(1983‒ ),男,博士,南京邮电大学物联网学院院长,主要研究方向为车联网络、卫星物联网、工业互联网等。" ]
[ "吴建盛(1979‒ ),男,博士,南京邮电大学计算机学院教授,主要研究方向为人工智能药物设计、软硬件协同加速等。" ]
收稿日期:2023-09-15,
修回日期:2024-06-07,
纸质出版日期:2024-09-10
移动端阅览
胡海峰,张熙,赵海涛等.移动边缘计算中通信高效的联邦学习模型剪枝算法[J].物联网学报,2024,08(03):112-126.
HU Haifeng,ZHANG Xi,ZHAO Haitao,et al.Communication-efficient model pruning for federated learning in mobile edge computing[J].Chinese Journal on Internet of Things,2024,08(03):112-126.
胡海峰,张熙,赵海涛等.移动边缘计算中通信高效的联邦学习模型剪枝算法[J].物联网学报,2024,08(03):112-126. DOI: 10.11959/j.issn.2096-3750.2024.00392.
HU Haifeng,ZHANG Xi,ZHAO Haitao,et al.Communication-efficient model pruning for federated learning in mobile edge computing[J].Chinese Journal on Internet of Things,2024,08(03):112-126. DOI: 10.11959/j.issn.2096-3750.2024.00392.
移动边缘计算中,边缘端服务器和移动终端利用联邦学习分布式架构构建深度模型,使终端之间无须共享数据就可以协作训练,然而深度模型训练需要在服务器和多个客户终端之间进行多轮通信传输,需要消耗大量的通信资源和训练开销。针对这个问题,提出了一种通信高效的联邦学习模型剪枝(CEMP-FL
communication-efficient model pruning for federated learning)架构,服务器运行单次层平衡网络剪枝(SBNP
single-shot layer balance network pruning)算法,通过粗剪枝和精细剪枝的组合,并结合非结构化稀疏参数压缩,显著减少了通信过程中传输的深度模型参数量,并有效地减少了终端侧训练样本分布差异带来的剪枝偏差。同时,使用网络剪枝的层平衡策略(LBP
layer balance policy),确保了深度模型层之间的参数量平衡,在稀疏度很大的情况下有效地推迟了深度模型坍塌。最后,基于两种基准数据集讨论了CEMP-FL在无线场景中的性能,实验表明,提出的CEMP-FL在保证性能的前提下取得了最优的通信成本压缩比,实现了联邦学习分布式训练架构下的高效通信。
In the mobile edge computing scenario
the distributed architecture of federated learning allows the edge server and mobile terminals to cooperatively train the deep model
without necessitating sharing of local data across the mobile terminals. While the training process generally consists of multiple rounds between the server and several clients
which can incur high communication costs and training overhead. To address this issue
a communication-efficient model pruning for federated learning (CEMP-FL) framework
which employed the single-shot layer balance network pruning (SBNP) algorithm
combined with unstructured sparse weight compression
was proposed to significantly reduce the size of the global model
and to effectively alleviate the biased pruning due to training samples discrepancy between clients. Meanwhile
layer balance policy (LBP) was adopted to ensure a balance of the model parameters between layers
which could effectively circumvent the problem of layer-collapse in the case of high sparsity. Finally
the performance of CEMP-FL in wireless scenarios was discussed on two benchmark datasets. The experimental results show that the proposed CEMP-FL method achieves the highest compression ratio of communication costs while maintaining performance
and provides efficient communication in the distributed architecture of federated learning.
MCMAHAN B , MOORE E , RAMAGE D , et al . Communication-efficient learning of deep networks from decentralized data [C ] // Proceedings of the Artificial Intelligence and Statistics . PMLR , 2017 : 1273 - 1282 .
YANG Q , LIU Y , CHEN T J , et al . Federated machine learning: concept and applications [J ] . ACM Transactions on Intelligent Systems and Technology , 10 ( 2 ): 1 - 19 .
DUAN M M , LIU D , CHEN X Z , et al . Self-balancing federated learning with global imbalanced data in mobile systems [J ] . IEEE Transactions on Parallel and Distributed Systems , 2021 , 32 ( 1 ): 59 - 71 .
KONEČNÝ J , MCMAHAN H B , YU F X , et al . Federated learning: strategies for improving communication efficiency [J ] . arXiv preprint , 2016 , arXiv: 1610.05492 .
HAMER J , MOHRI M , SURESH A T . Fedboost: a communication-efficient algorithm for federated learning [C ] // International Conference on Machine Learning . PMLR , 2020 : 3973 - 3983 .
LEE N , AJANTHAN T , TORR P H S . SNIP: single-shot network pruning based on connection sensitivity [J ] . arXiv preprint , 2018 , arXiv: 1810.02340 .
ZHU M , GUPTA S . To prune, or not to prune: exploring the efficacy of pruning for model compression [J ] . arXiv preprint , 2017 , arXiv: 1710.01878 .
SINGH S P , JAGGI M . Model fusion via optimal transport [J ] . arXiv preprint , 2019 , arXiv: 1910.05653 .
PALIHAWADANA C , WIRATUNGA N , WIJEKOON A , et al . FedSim: similarity guided model aggregation for Federated Learning [J ] . Neurocomputing , 2022 , 483 ( C ): 432 - 445 .
LI T , HU S , BEIRAMI A , et al . Ditto: fair and robust federated learning through personalization [C ] // International Conference on Machine Learning . PMLR , 2021 : 6357 - 6368 .
MARFOQ O , NEGLIA G , BELLET A , et al . Federated multi-task learning under a mixture of distributions [J ] . Advances in Neural Information Processing Systems , 2021 , 34 : 15434 - 15447 .
XIE C , HUANG K , CHEN P Y , et al . DBA: distributed backdoor attacks against federated learning [C ] // International Conference on Learning Representations . 2020 .
YIN H X , MALLYA A , VAHDAT A , et al . See through gradients: image batch recovery via GradInversion [C ] // Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2021 : 16332 - 16341 .
LI Z H , ZHANG J X , LIU L Y , et al . Auditing privacy defenses in federated learning via generative gradient leakage [C ] // Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2022 : 10122 - 10132 .
FRABONI Y , VIDAL R , KAMENI L , et al . Clustered sampling: Low-variance and improved representativity for clients selection in federated learning [C ] // International Conference on Machine Learning . PMLR , 2021 : 3407 - 3416 .
BALAKRISHNAN R , LI T , ZHOU T , et al . Diverse client selection for federated learning via submodular maximization [C ] // International Conference on Learning Representations . 2022 .
TANAKA H , KUNIN D , YAMINS D L K , et al . Pruning neural networks without any data by iteratively conserving synaptic flow [C ] // Proceedings of the Proceedings of the 34th International Conference on Neural Information Processing Systems . New York : ACM , 2020 : 6377 - 6389 .
RAMANUJAN V , WORTSMAN M , KEMBHAVI A , et al . What’s hidden in a randomly weighted neural network? [C ] // Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2020 : 11890 - 11899 .
PATIL S M , DOVROLIS C . PHEW: constructing sparse networks that learn fast and generalize well without training data [C ] // International Conference on Machine Learning . PMLR , 2021 : 8432 - 8442 .
LIN J , LUO X T , HONG M , et al . Memory-friendly scalable super-resolution via rewinding lottery ticket hypothesis [C ] // Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2023 : 14398 - 14407 .
SRINIVAS S , SUBRAMANYA A , BABU R V . Training sparse neural networks [C ] // Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) . Piscataway : IEEE Press , 2017 : 455 - 462 .
FRANKLE J , DZIUGAITE G K , ROY D M , et al . Linear mode connectivity and the lottery ticket hypothesis [C ] // Proceedings of the Proceedings of the 37th International Conference on Machine Learning . New York : ACM , 2020 : 3259 – 3269 .
YUAN G Z , SHEN L , ZHENG W S . A block decomposition algorithm for sparse optimization [C ] // Proceedings of the Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . New York : ACM , 2020 : 275 - 285 .
HE Y , DING Y H , LIU P , et al . Learning filter pruning criteria for deep convolutional neural networks acceleration [C ] // Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway : IEEE Press , 2020 : 2006 - 2015 .
HU R , GONG Y M , GUO Y X . Federated learning with sparsification-amplified privacy and adaptive optimization [C ] // Proceedings of the Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence . California : International Joint Conferences on Artificial Intelligence Organization , 2021 : 1463 - 1469 .
STRIPELIS D , GUPTA U , STEEG G V , et al . Federated progressive sparsification (purge, merge, tune) [J ] . arXiv preprint , 2022 , arXiv: 2204.12430 .
QIU X C , FERNANDEZ-MARQUES J , GUSMAO P P , et al . ZeroFL: efficient on-device training for federated learning with local sparsity [EB/OL ] . 2022 : arXiv : 2208 . 02507 . http://arxiv.org/abs/2208.02507 http://arxiv.org/abs/2208.02507
PASE F , ISIK B , GUNDUZ D , et al . Efficient federated random subnetwork training [C ] // Workshop on Federated Learning: Recent Advances and New Challenges (in Conjunction with NeurIPS 2022). 2022 .
CHEN X Z , ZHU J Y , JIANG J B , et al . Tight compression: compressing CNN model tightly through unstructured pruning and simulated annealing based permutation [C ] // Proceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC) . Piscataway : IEEE Press , 2020 : 1 - 6 .
SONG HAN , HUIZI MAO , AND WILLIAM J DALLY . Deep compression: compressing deep neural networks with pruning, trained quantization and huffman coding . In International Conference on Learning Representations , 2016
VAHIDIAN S , MORAFAH M , LIN B . Personalized federated learning by structured and unstructured pruning under data heterogeneity [C ] // Proceedings of the 2021 IEEE 41st International Conference on Distributed Computing Systems Workshops (ICDCSW) . Piscataway : IEEE Press , 2021 : 27 - 34 .
0
浏览量
13
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构