浏览全部资源
扫码关注微信
1.华中科技大学电子信息与通信学院,湖北 武汉 430074
2.国网湖北省电力有限公司电力科学研究院,湖北 武汉 430077
[ "杨鹏(1991‒ ),男,博士,华中科技大学副教授,主要研究方向为人工智能及其在下一代网络、移动边缘计算、VR和视频分析中的应用等。" ]
[ "梁雨欣(2001‒ ),女,华中科技大学硕士生,主要研究方向为移动边缘计算、视频分析和移动AIGC网络等。" ]
[ "孔雨新 (2000‒ ),男,华中科技大学硕士生,主要研究方向为移动边缘计算、视频分析和移动AIGC网络等。" ]
[ "刘鸣柳 (1992‒ ),女,国网湖北省电力有限公司电力科学研究院工程师,主要研究方向为物联网和边缘计算等。" ]
纸质出版日期:2024-12-10,
收稿日期:2024-10-08,
修回日期:2024-10-19,
移动端阅览
杨鹏, 梁雨欣, 孔雨新, 等. 面向高效巡检任务推理的边缘辅助无人机机载视频压缩与传输[J]. 物联网学报, 2024,8(4):129-139.
YANG PENG, LIANG YUXIN, KONG YUXIN, et al. Edge-assisted UAV onboard video compression and transmission for efficient inference of patrolling tasks. [J]. Chinese journal on internet of things, 2024, 8(4): 129-139.
杨鹏, 梁雨欣, 孔雨新, 等. 面向高效巡检任务推理的边缘辅助无人机机载视频压缩与传输[J]. 物联网学报, 2024,8(4):129-139. DOI: 10.11959/j.issn.2096-3750.2024.00418.
YANG PENG, LIANG YUXIN, KONG YUXIN, et al. Edge-assisted UAV onboard video compression and transmission for efficient inference of patrolling tasks. [J]. Chinese journal on internet of things, 2024, 8(4): 129-139. DOI: 10.11959/j.issn.2096-3750.2024.00418.
面向无人机(UAV
unmanned aerial vehicle)巡检任务采集数据的高效推理,研究了移动边缘计算(MEC
mobile edge computing)辅助的UAV机载视频中感兴趣区域(RoI
region of interest)提取和高效传输问题,以提升UAV在一般巡检任务中采集和分析数据性能。由于UAV机载计算资源有限,提出了一种基于类激活映射(CAM
class activation mapping)的轻量级RoI提取方法,以快速定位包含潜在目标的区域,并将这些RoI高效卸载至边缘服务器进行推理。为应对UAV动态轨迹与网络环境的变化,进一步通过自适应RoI边界框选择算法对UAV采集的RoI进行有效筛选,并利用量化参数(QP
quantization parameter)自适应调整机载视频编码质量,以进一步压缩传输数据量。在此基础上,构建了一个联合RoI边界框选择与自适应编码配置的优化问题,并采用启发式算法求解该优化问题。实验结果表明,该方案能够有效提升检测精度,减少传输数据量,并显著降低系统时延,在基于UAV的一般巡检任务中表现出优异的性能。
The problem of region of interest (RoI) extraction and transmission of video frames captured in edge-assisted unmanned aerial vehicle (UAV) systems was investigated to improve the inference performance of patrolling tasks. Due to the limited UAV onboard computational resources
a lightweight RoI extraction method based on class activation mapping (CAM) was proposed
which was able to rapidly locate areas containing patrolling targets. Those RoIs were then transmitted to edge servers for further processing. To address the challenges from dynamic UAV trajectories and fluctuating network conditions
the RoIs collected by UAVs were properly choosen through an adaptive RoI box selection algorithm
followed by adaptive configuration of quantization parameters (QP) of video codec
in order to further compress the transmitted data volume. A joint optimization problem was thus formulated for RoI box selection and adaptive coding configuration
which was solved via a heuristic algorithm. Experimental results demonstrate that
the proposed approach can effectively improve the detection accuracy of patrolling tasks
reduce data transmission volume
and significantly lower system latency
indicating great potential in UAV-based patrolling applications.
无人机通信移动边缘计算RoI提取视频编码
UAV communicationmobile edge computingRoI extractionvideo coding
MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: the communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322-2358.
LYU F, YANG P, SHI W S, et al. Online UAV scheduling towards throughput QoS guarantee for dynamic IoVs[C]//Proceedings of the ICC 2019 - 2019 IEEE International Conference on Communications (ICC). Piscataway: IEEE Press, 2019: 1-6.
NOMIKOS N, GKONIS P K, BITHAS P S, et al. A survey on UAV-aided maritime communications: deployment considerations, applications, and future challenges[J]. IEEE Open Journal of the Communications Society, 2022, 4: 56-78.
LU W J, LAN C Z, NIU C Y, et al. A CNN-transformer hybrid model based on CSWin transformer for UAV image object detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 1211-1231.
ULLAH Z, AL-TURJMAN F, MOSTARDA L. Cognition in UAV-aided 5G and beyond communications: a survey[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(3): 872-891.
YANG T T, JIANG Z, SUN R J, et al. Maritime search and rescue based on group mobile computing for unmanned aerial vehicles and unmanned surface vehicles[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7700-7708.
LYU H G, SHAO Z Y, CHENG T, et al. Sea-surface object detection based on electro-optical sensors: a review[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(2): 190-216.
邵瑰玮, 刘壮, 付晶, 等. 架空输电线路无人机巡检技术研究进展[J]. 高电压技术, 2020, 46(1): 14-22.
SHAO G W, LIU Z, FU J, et al. Research progress in unmanned aerial vehicle inspection technology on overhead transmission lines[J]. High Voltage Engineering, 2020, 46(1): 14-22.
BENJDIRA B, KOUBAA A, AZAR A T, et al. TAU: a framework for video-based traffic analytics leveraging artificial intelligence and unmanned aerial systems[J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105095.
FENG Q H, XU X Z, WANG Z X. Deep learning-based small object detection: a survey[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 6551-6590.
ZHANG X D, IZQUIERDO E, CHANDRAMOULI K. Dense and small object detection in UAV vision based on cascade network[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway: IEEE Press, 2019: 118-126.
RAZAAK M, KERDEGARI H, ARGYRIOU V, et al. Multi-scale feature fused single shot detector for small object detection in UAV images[C]//Proceedings of the Lecture Notes in Computer Science. Cham: Springer International Publishing, 2019: 778-786.
ZHOU R T, WU X Y, TAN H S, et al. Two time-scale joint service caching and task offloading for UAV-assisted mobile edge computing[C]//Proceedings of the IEEE INFOCOM 2022 - IEEE Conference on Computer Communications. Piscataway: IEEE Press, 2022: 1189-1198.
叶刚. 基于视觉注意的立体视频感兴趣区域提取[D]. 杭州: 浙江大学, 2013.
YE G. ROI Extraction for stereoscopic video based on visual attention [D]. Hangzhou: Zhejiang University, 2013.
申帅. 无人机边缘计算中的动态资源分配算法研究[D]. 成都: 电子科技大学, 2024.
SHEN S. Research on dynamic resource allocation algorithm in unmanned aerial vehicle aided edge computing[D]. Chengdu: University of Electronic Science and Technology of China, 2024.
WANG C Z, YANG P, HOU J W, et al. Dependence-aware multitask scheduling for edge video analytics with accuracy guarantee[J]. IEEE Internet of Things Journal, 2024, 11(16): 26970-26983.
KONG Y X, YANG P, CHENG Y. Adaptive on-device model update for responsive video analytics in adverse environments[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, PP(99): 1.
JAIN S, ZHANG X, ZHOU Y H, et al. Spatula: efficient cross-camera video analytics on large camera networks[C]//Proceedings of the 2020 IEEE/ACM Symposium on Edge Computing (SEC). Piscataway: IEEE Press, 2020: 110-124.
期治博, 杜磊, 霍如, 等. 基于边缘计算的多摄像头视频协同分析方法[J]. 通信学报, 2023, 44(8): 14-26.
QI Z B, DU L, HUO R, et al. Multi-camera video collaborative analysis method based on edge computing[J]. Journal on Communications, 2023, 44(8): 14-26.
JIANG J C, ANANTHANARAYANAN G, BODIK P, et al. Chameleon: scalable adaptation of video analytics[C]//Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. New York: ACM Press, 2018: 253-266.
YANG P, CHENG Y, ZHANG N, et al. Adaptive network configuration for efficient and accurate neural video inference[J]. IEEE Transactions on Cognitive Communications and Networking, 2024, 10(1): 263-276.
ZHAO C J, LIU R W, QU J X, et al. Deep learning-based object detection in maritime unmanned aerial vehicle imagery: review and experimental comparisons[J]. Engineering Applications of Artificial Intelligence, 2024, 128: 107513.
SUN W, DAI L, ZHANG X R, et al. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring[J]. Applied Intelligence, 2022, 52(8): 8448-8463.
WANG Y T, CHEN W W, LUAN T H, et al. Task offloading for post-disaster rescue in unmanned aerial vehicles networks[J]. IEEE/ACM Transactions on Networking, 2022, 30(4): 1525-1539.
DAI X X, XIAO Z, JIANG H B, et al. UAV-assisted task offloading in vehicular edge computing networks[J]. IEEE Transactions on Mobile Computing, 2024, 23(4): 2520-2534.
江雪, 赵亮. 无人机辅助移动边缘计算网络中轨迹设计和带宽分配策略[J]. 物联网学报, 2023, 7(4): 123-131.
JIANG X, ZHAO L. Trajectory design and bandwidth allocation strategy in UAV-assisted MEC network[J]. Chinese Journal on Internet of Things, 2023, 7(4): 123-131.
XU S, ZHANG X Y, LI C G, et al. Deep reinforcement learning approach for joint trajectory design in multi-UAV IoT networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3389-3394.
冯建新, 栾帅帅, 刘俊梅, 等. 一种高吞吐量的无人机轨迹规划方法[J]. 计算机工程, 2021, 47(1): 172-181.
FENG J X, LUAN S S, LIU J M, et al. An unmanned aerial vehicle trajectory planning method with high throughput[J]. Computer Engineering, 2021, 47(1): 172-181.
LIN X H, SU G C, CHEN B, et al. Striking a balance between system throughput and energy efficiency for UAV-IoT systems[J]. IEEE Internet of Things Journal, 2019, 6(6): 10519-10533.
LI J, YI C Y, CHEN J Y, et al. Joint trajectory planning, application placement, and energy renewal for UAV-assisted MEC: a triple-learner-based approach[J]. IEEE Internet of Things Journal, 2023, 10(15): 13622-13636.
WALLENIUS J, DYER J S, FISHBURN P C, et al. Multiple criteria decision making, multiattribute utility theory: recent accomplishments and what lies ahead[J]. Management Science, 2008, 54(7): 1336-1349.
VARGA L A, KIEFER B, MESSMER M, et al. SeaDronesSee: a maritime benchmark for detecting humans in open water[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2022: 3686-3696.
YANG Z, WANG X, WU J H, et al. EdgeDuet: tiling small object detection for edge assisted autonomous mobile vision[J]. IEEE/ACM Transactions on Networking, 2023, 31(4): 1765-1778.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构