浏览全部资源
扫码关注微信
1.武汉科技大学计算机科学与技术学院,湖北 武汉 430081
2.中国人民解放军91999部队,山东 青岛 266001
3.湖北经济学院信息管理学院,湖北 武汉 430205
[ "鲁剑锋(1982‒ ),男,博士,武汉科技大学计算机科学与技术学院教授、博士生导师,主要研究方向为边缘智能、联邦学习和群智计算。" ]
[ "祁盼(2001‒ ),男,武汉科技大学计算机科学与技术学院硕士生,主要研究方向为联邦学习资源优化和激励机制。" ]
[ "潘林雨(1980‒ ),男,中国人民解放军91999部队海军专业技术上校,主要研究方向为作战数据应用和智能计算。" ]
[ "李冰(1995‒ ),女,武汉科技大学计算机科学与技术学院博士生,主要研究方向为联邦学习和群智计算。" ]
[ "曹书琴(1992‒ ),女,博士,武汉科技大学计算机科学与技术学院讲师,主要研究方向为联邦学习、车联网和交通数据挖掘。" ]
[ "靳延安(1975‒ ),男,博士,湖北经济学院信息管理学院副教授,主要研究方向为信息智能处理、数据挖掘和智慧养老。" ]
纸质出版日期:2024-12-10,
收稿日期:2024-10-08,
修回日期:2024-11-19,
移动端阅览
鲁剑锋, 祁盼, 潘林雨, 等. 面向算力物联网的联邦学习系统及设计研究进展[J]. 物联网学报, 2024,8(4):70-88.
LU JIANFENG, QI PAN, PAN LINYU, et al. Recent advances on federated learning systems and the design for computing power Internet of things. [J]. Chinese journal on internet of things, 2024, 8(4): 70-88.
鲁剑锋, 祁盼, 潘林雨, 等. 面向算力物联网的联邦学习系统及设计研究进展[J]. 物联网学报, 2024,8(4):70-88. DOI: 10.11959/j.issn.2096-3750.2024.00438.
LU JIANFENG, QI PAN, PAN LINYU, et al. Recent advances on federated learning systems and the design for computing power Internet of things. [J]. Chinese journal on internet of things, 2024, 8(4): 70-88. DOI: 10.11959/j.issn.2096-3750.2024.00438.
算力物联网(CPIoT
computing power Internet of things)通过整合物联网(IoT
Internet of things)设备与强大的计算资源,为数据密集型任务提供了强大的支持,实现了智能决策。在CPIoT的隐私保护需求背景下,联邦学习(FL
federated learning)作为一种旨在保护数据隐私、进行分布式学习的技术,为解决数据“孤岛”问题、执行复杂训练任务及大模型训练提供了新途径。虽然研发人员一直致力于开发更加成熟的FL系统以适应CPIoT环境,但目前的研究在深入探讨FL系统设计技术的优势与短板、技术特点与差异、支持与适用情况等方面仍然存在不足。因此,首先深入研究了当前业内有影响力的FL系统,包括开源框架和基准测试平台,并在CPIoT的不同技术维度上深入对比分析系统设计差异,建立了CPIoT环境下详细的FL开源框架与基准测试平台的选择标准及建议,使开发人员可以更加高效地选择合适的框架及平台。然后,列举了多种CPIoT场景下FL系统的选择与完整系统搭建的实验,使开发人员可以更好地借助上述技术实现FL应用。最后,总结了FL系统设计领域的标准化现状和发展挑战,并对未来发展进行了展望。旨在全面概述FL系统及其设计研究进展,为推动CPIoT与FL网络的深度融合提供参考,也为未来研究提供思路。
Computing power Internet of things (CPIoT) integrates Internet of things (IoT) devices with substantial computational resources to support data-intensive tasks
facilitating intelligent decision-making. Within the context of privacy protection requirements for CPIoT
federated learning (FL) that is a distributed learning technique upholds data privacy
and offers a novel approach to addressing data silos for executing complex training tasks
and training large models. Although researchers have been committed to develop more mature federated learning systems to adapt to the CPIoT environment
current research lacks in-depth exploration of the strengths and limitations
technical features and differences
and support and applicability of federated learning system design techniques. Firstly
the most influential federated learning systems in the industry were studied
including open-source frameworks and benchmarking platforms. The system design differences in various technical dimensions of CPIoT in an in-depth comparison were analyzed. Detailed criteria and recommendations for selecting open-source frameworks and benchmarking platforms in the CPIoT environment were established
so that developers could efficiently choose the most suitable frameworks and platforms. Seeondly
various experiments for selecting federated learning systems and building complete systems were presented in multiple CPIoT scenarios
to assist developers in better realizing federated learning applications by utilizing the aforementioned technologies. Finally
the current state of standardization and development challenges in the field of federated learning system design were summarized
and future development prospects were discussed. The purpose is to provide a comprehensive overview of FL systems and the design research progress
serving as a reference for the deep integration of CPIoT and FL networks and offering insights for future research.
算力物联网联邦学习开源框架基准测试平台计算范例
CPIoTFLopen-source frameworkbenchmarking platformcomputing paradigm
HE S J, YANG X Y. Federated learning-based financial risk early warning model for Baijiu enterprises[J]. Academic Journal of Management and Social Sciences, 2023, 3(3): 133-138.
YANG W S, ZHANG Y H, YE K J, et al. FFD: a federated learning based method for credit card fraud detection[M]. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2019: 18-32.
PFITZNER B, STECKHAN N, ARNRICH B. Federated learning in a medical context: a systematic literature review[J]. ACM Transactions on Internet Technology, 2021, 21(2): 1-31.
WANG Z H, FU D Q, ZHANG J W. Logistics data sharing method based on federated learning[C]//Proceedings of the Fifth International Conference on Computer Information Science and Artificial Intelligence (CISAI 2022). SPIE, 2023: 380-385.
ABHISHEK V A, BINNY S, JOHAN T R, et al. Federated learning: collaborative machine learning without centralized training data[J]. Google Research Blog, 2017, 3.
丁波涛. 国家数据局成立将有力赋能数字经济高质量发展[J]. 信息资源管理学报, 2023, 13(4): 4-5, 34.
DING B T. The upcoming national data bureau will promote high-quality development of digital economy[J]. Journal of Information Resources Management, 2023, 13(4): 4-5, 34.
IDC. 未来算力推动企业迈向数字化2.0[R]. 2021.
IDC. Future computing power drives enterprises towards digitalization[R]. 2021.
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[J]. arXiv preprint, 2016, arXiv: 1602.05629.
BEUTEL D J, TOPAL T, MATHUR A, et al. Flower: a friendly federated learning research framework[J]. arXiv preprint, 2020, arXiv: 2007.14390.
CHEN L. Deep learning and practice with MindSpore[M]. London: Springer Nature, 2021.
LIN B Y, HE C Y, ZENG Z H, et al. FedNLP: benchmarking federated learning methods for natural language processing tasks[J]. arXiv preprint, 2021, arXiv: 2104.08815.
LIU Y, FAN T, CHEN T, et al. Fate: an industrial grade platform for collaborative learning with data protection[J]. Journal of Machine Learning Research, 2021, 22(226): 1-6.
XIE Y X, WANG Z, GAO D W, et al. FederatedScope: a flexible federated learning platform for heterogeneity[J]. arXiv preprint, 2022, arXiv: 2204.05011.
HE C Y, LI S Z, SO J, et al. FedML: a research library and benchmark for federated machine learning[J]. arXiv preprint, 2020, arXiv: 2007.13518.
LAI F, DAI Y W, SINGAPURAM S S, et al. FedScale: benchmarking model and system performance of federated learning at scale[J]. arXiv preprint , 2021, arXiv: 2105.11367.
SHAHID O, POURIYEH S, PARIZI R M, et al. Communication efficiency in federated learning: achievements and challenges[J]. arXiv preprint , 2021, arXiv: 2107.10996.
ZHU H Y, XU J J, LIU S Q, et al. Federated learning on non-IID data: a survey[J]. Neurocomputing, 2021, 465: 371-390.
LI Q B, WEN Z Y, WU Z M, et al. A survey on federated learning systems: vision, hype and reality for data privacy and protection[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3347-3366.
PaddlePaddle. PaddleFL[EB]. 2023.
CHENG S H. The extended technology stack of Web 3.0[M]. Web 3.0: Concept, Content and Context. Singapore: Springer Nature Singapore, 2024: 57-81.
MA J, ZHENG Y, FENG J, et al. SecretFlow-SPU: a performant and user-friendly framework for privacy-preserving machine learning[C]//2023 USENIX Annual Technical Conference (USENIX ATC 23). 2023: 17-33.
Bytedance. FedLearner[EB]. 2023.
ZENG D, LIANG S, HU X, et al. FedLab: a flexible federated learning framework[J]. Journal of Machine Learning Research, 2023, 24(100): 1-7.
CHEN Y, HUANG G, SHI J, et al. Rosetta: a privacy-preserving framework based on tensorFlow[EB]. 2023.
LIU B, TAN C W, WANG J Z, et al. Fedlearn-Algo: a flexible open-source privacy-preserving machine learning platform[J]. arXiv preprint , 2021, arXiv: 2107.04129.
JD Open Source. 9n-mpc[EB]. 2024.
SUN Z T, KAIROUZ P, SURESH A T, et al. Can you really backdoor federated learning? [J]. arXiv preprint, 2019, arXiv: 1911.07963.
ZILLER A, TRASK A, LOPARDO A, et al. PySyft: a library for easy federated learning[M]. Studies in Computational Intelligence. Cham: Springer International Publishing, 2021: 111-139.
REINA G A, GRUZDEV A, FOLEY P, et al. OpenFL: an open-source framework for federated learning[J]. arXiv preprint , 2021, arXiv: 2105.06413.
Voltaire Edoh I. Federated learning with FEDn for financial market surveillance[M]. Master thesis, Department Faculty Science and Technology, 2022: 58.
RYU M, KIM Y, KIM K, et al. APPFL: open-source software framework for privacy-preserving federated learning[C]//Proceedings of the 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). Piscataway: IEEE Press, 2022: 1074-1083.
LI L, WANG J, XU C Z. FLSim: an extensible and reusable simulation framework for federated learning[M]. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Cham: Springer International Publishing, 2021: 350-369.
CALDAS S, DUDDU S M K, WU P, et al. LEAF: a benchmark for federated settings[J]. arXiv preprint , 2018, arXiv: 1812.01097.
CHAI D, WANG L Y, YANG L, et al. FedEval: a holistic evaluation framework for federated learning[J]. arXiv preprint, 2020, arXiv: 2011.09655.
LHOEST Q, DEL MORAL A V, JERNITE Y, et al. Datasets: a community library for natural language processing[J]. arXiv preprint, 2021, arXiv: 2109.02846.
WANG X B, WU Q, FAN P Y, et al. Vehicle selection for C-V2X mode 4-based federated edge learning systems[J]. IEEE Systems Journal, 2024, 18(16): 1927-1938.
ZHANG C, ZHANG W J, WU Q, et al. Distributed deep reinforcement learning based gradient quantization for federated learning enabled vehicle edge computing[J]. IEEE Internet of Things Journal, 2024: 1-15.
LIM W Y B, NG J S, XIONG Z H, et al. Decentralized edge intelligence: a dynamic resource allocation framework for hierarchical federated learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(3): 536-550.
ZHANG X W, YIN W T, HONG M Y, et al. Hybrid federated learning: algorithms and implementation[J]. arXiv preprint, 2020, arXiv: 2012.12420.
BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for privacy-preserving machine learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 1175-1191.
HE K, YANG L, HONG J, et al. PrivC—a framework for efficient secure two-party computation[M]. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Cham: Springer International Publishing, 2019: 394-407.
XU X A, ZHOU F G, LIU B, et al. Efficient multiple organ localization in CT image using 3D region proposal network[J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 1885-1898.
NG K W, TIAN G L, TANG M L. Dirichlet and related distributions: theory, methods and applications[M]. Chichester: Wiley, 2011.
KAGGLE. Default of Credit Card Clients[EB]. 2017.
单华玮. 基于机器学习的银行信用卡违约预测研究[J]. 数据挖掘, 2019, 9: 145.
SHAN H W. Research on bank credit card default prediction based on machine learning[J]. Hans Journal of Data Mining, 2019, 9: 145.
LI T, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[J]. Proceedings of Machine Learning and Systems, 2020, 2: 429-450.
KUZNETSOVA A, ROM H, ALLDRIN N, et al. The open images dataset V4[J]. International Journal of Computer Vision, 2020, 128(7): 1956-1981.
LI T, SAHU A K, TALWALKAR A, et al. Federated learning: challenges, methods, and future directions[J]. IEEE Signal Processing Magazine, 2020, 37(3): 50-60.
IEEE Guide for Architectural Framework and Application of Federated Machine Learning: IEEE 3652.1-2020[S]. Institute of Electrical and Electronics Engineers, 2020.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构