浏览全部资源
扫码关注微信
1.电子科技大学信息与通信工程学院,四川 成都 611731
2.电子科技大学(深圳)高等研究院,广东 深圳 518110
3.广东省智能机器人研究院,广东 东莞 523830
[ "尹宏博(1998‒ ),男,电子科技大学信息与通信工程学院博士生,主要研究方向为算力网络、联邦学习、边缘计算等。" ]
[ "王帅(2001‒ ),男,电子科技大学信息与通信工程学院硕士生,主要研究方向为算力网络、边缘智能等。" ]
[ "张科(1978‒ ),男,博士,电子科技大学信息与通信工程学院副教授,主要研究方向为边缘智能网络、智慧车联网、边缘计算等。" ]
[ "张引(1986‒ ),男,博士,电子科技大学信息与通信工程学院研究员,主要研究方向为移动计算、算力网络、边缘智能等。" ]
纸质出版日期:2024-12-10,
收稿日期:2024-11-18,
修回日期:2024-12-10,
移动端阅览
尹宏博, 王帅, 张科, 等. 车辆算力网络中异步鲁棒联邦学习方法研究[J]. 物联网学报, 2024,8(4):14-22.
YIN HONGBO, WANG SHUAI, ZHANG KE, et al. Research on asynchronous robust federated learning method in vehicle computing power network. [J]. Chinese journal on internet of things, 2024, 8(4): 14-22.
尹宏博, 王帅, 张科, 等. 车辆算力网络中异步鲁棒联邦学习方法研究[J]. 物联网学报, 2024,8(4):14-22. DOI: 10.11959/j.issn.2096-3750.2024.00452.
YIN HONGBO, WANG SHUAI, ZHANG KE, et al. Research on asynchronous robust federated learning method in vehicle computing power network. [J]. Chinese journal on internet of things, 2024, 8(4): 14-22. DOI: 10.11959/j.issn.2096-3750.2024.00452.
传统联邦学习的同步训练机制并不适用于动态的车辆算力网络场景,且在恶意车辆攻击的威胁下,缺乏有效的攻击检测机制。为了解决以上问题,首先,提出一种异步鲁棒联邦学习方法,通过车辆之间异步地执行联邦学习过程,在实现车辆数据隐私保护的同时,提高模型协同训练的效率。其次,有针对性地设计了模型选择方法,并提出潜在恶意模型检测方法和车辆信誉评估方法,进一步增强系统鲁棒性。然后,从概率上详细分析了所提方法的安全性,为各项参数优化提供理论基础。最后,仿真结果表明该方法能够在实现高效异步联邦学习的同时具有较好的鲁棒性。
The synchronous training mechanism of traditional federated learning was not suitable for dynamic vehicle computing power network scenarios
and lacked effective detection mechanisms under the threat of malicious vehicle attacks. To address the above issues
an asynchronous robust federated learning method was proposed
which achieves vehicle data privacy protection while improving the efficiency of model collaborative training through asynchronous execution of federated learning processes between vehicles. Secondly
a model selection method was designed
and potential malicious model detection and vehicle reputation evaluation methods are proposed to further enhance the robustness of the system. Then
the safety of the proposed method was analyzed in detail from a probabilistic perspective
providing a theoretical basis for optimizing various parameters. Finally
the simulation results show that this method can achieve efficient asynchronous federated learning while having good robustness.
车辆算力网络联邦学习鲁棒性异步学习
vehicle computing power networkfederated learningrobustnessasynchronous learning
陈山枝, 胡金玲, 时岩, 等. LTE-V2X车联网技术、标准与应用[J]. 电信科学, 2018, 34(4): 1-11.
CHEN S Z, HU J L, SHI Y, et al. Technologies, standards and applications of LTE-V2X for vehicular networks[J]. Telecommunications Science, 2018, 34(4): 1-11.
中国信息通信研究院. 车联网白皮书(2023年)[R]. 2023.
China Academy of Information and Communications Technology. Internet of vehicles white paper(2023)[R]. 2023.
HÄFNER B, BAJPAI V, OTT J, et al. A survey on cooperative architectures and maneuvers for connected and automated vehicles[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 380-403.
AGBAJE P, ANJUM A, MITRA A, et al. Survey of interoperability challenges in the Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 22838-22861.
HE Y, HUANG K, ZHANG G Z, et al. Bift: a blockchain-based federated learning system for connected and autonomous vehicles[J]. IEEE Internet of Things Journal, 2022, 9(14): 12311-12322.
QIU C, YAO H P, WANG X F, et al. AI-chain: blockchain energized edge intelligence for beyond 5G networks[J]. IEEE Network, 2020, 34(6): 62-69.
YAO H P, LIU C, ZHANG P Y, et al. Identification of encrypted traffic through attention mechanism based long short term memory[J]. IEEE Transactions on Big Data, 2022, 8(1): 241-252.
雷波, 刘增义, 王旭亮, 等. 基于云、网、边融合的边缘计算新方案: 算力网络[J]. 电信科学, 2019, 35(9): 44-51.
LEI B, LIU Z Y, WANG X L, et al. Computing network: a new multi-access edge computing[J]. Telecommunications Science, 2019, 35(9): 44-51.
MOU F Y, LOU J, TANG Z Q, et al. Adaptive digital twin migration in vehicular edge computing and networks[J]. IEEE Transactions on Vehicular Technology, 2024, PP(99): 1-16.
柴浩野. 基于区块链的安全高效车联网数据共享策略研究[D]. 成都: 电子科技大学, 2022.
CHAI H Y. Research on safe and efficient data sharing strategy of Internet of vehicles based on blockchain[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
LIU Y M, YU F R, LI X, et al. Blockchain and machine learning for communications and networking systems[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 1392-1431.
XU D H, DING Z Z, HE X, et al. Learning from naturalistic driving data for human-like autonomous highway driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7341-7354.
HE Y, ZHANG Z, YU F R, et al. Deep-reinforcement-learning-based optimization for cache-enabled opportunistic interference alignment wireless networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(11): 10433-10445.
WANG J D, LIU J J, KATO N. Networking and communications in autonomous driving: a survey[J]. IEEE Communications Surveys & Tutorials, 2019, 21(2): 1243-1274.
BETZ J, ZHENG H R, LINIGER A, et al. Autonomous vehicles on the edge: a survey on autonomous vehicle racing[J]. IEEE Open Journal of Intelligent Transportation Systems, 2022, 3: 458-488.
XUE T, ZHANG Z Q, MA W N, et al. Nighttime pedestrian and vehicle detection based on a fast saliency and multifeature fusion algorithm for infrared images[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 16741-16751.
FANG Y K, MIN H G, WANG W Q, et al. A fault detection and diagnosis system for autonomous vehicles based on hybrid approaches[J]. IEEE Sensors Journal, 2020, 20(16): 9359-9371.
WU Y Q, LIAO S Q, LIU X, et al. Deep reinforcement learning on autonomous driving policy with auxiliary critic network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(7): 3680-3690.
MCMAHAN H B, MOORE E, RAMAGE D , et al. Communication-efficient learning of deep networks from decentralized data[J]. arXiv preprint, 2016, arXiv: 1602.05629.
NGUYEN D C, DING M, PATHIRANA P N, et al. Federated learning for Internet of Things: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1622-1658.
CHELLAPANDI V P, YUAN L Q, BRINTON C G, et al. Federated learning for connected and automated vehicles: a survey of existing approaches and challenges[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 119-137.
XING L, ZHAO P C, GAO J P, et al. A survey of the social Internet of vehicles: secure data issues, solutions, and federated learning[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(2): 70-84.
MOLLAH M B, ZHAO J, NIYATO D, et al. Blockchain for the Internet of vehicles towards intelligent transportation systems: a survey[J]. IEEE Internet of Things Journal, 2021, 8(6): 4157-4185.
ALAZAB M, RM S P, PARIMALA M, et al. Federated learning for cybersecurity: concepts, challenges, and future directions[J]. IEEE Transactions on Industrial Informatics, 2022, 18(5): 3501-3509.
WANG H, SREENIVASAN K, RAJPUT S, et al. Attack of the tails: yes, you really can backdoor federated learning[J]. arXiv preprint, 2020, arXiv: 2007.05084.
SHAFAHI A, HUANG W R, NAJIBI M, et al. Poison frogs! targeted clean-label poisoning attacks on neural networks[J]. arXiv preprint, 2018, arXiv: 1804.00792.
XU C H, QU Y Y, EKLUND P W, et al. BAFL: an efficient blockchain-based asynchronous federated learning framework[C]//Proceedings of the 2021 IEEE Symposium on Computers and Communications (ISCC). Piscataway: IEEE Press, 2021: 1-6.
CAO M R, ZHANG L, CAO B. Toward on-device federated learning: a direct acyclic graph-based blockchain approach[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(4): 2028-2042.
CHAI H Y, LENG S P, CHEN Y J, et al. A hierarchical blockchain-enabled federated learning algorithm for knowledge sharing in Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 3975-3986.
LU Y L, HUANG X H, ZHANG K, et al. Blockchain empowered asynchronous federated learning for secure data sharing in Internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4298-4311.
STALLKAMP J, SCHLIPSING M, SALMEN J, et al. Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition[J]. Neural Networks, 2012, 32: 323-332.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构