浏览全部资源
扫码关注微信
1. 东南大学信息科学与工程学院移动通信国家重点实验室,江苏 南京 210096
2. 紫金山实验室,江苏 南京 211111
3. 东南大学信息科学与工程学院毫米波国家重点实验室,江苏 南京 210096
4. 伦敦玛丽女王大学电子工程与计算机科学学院,英国 伦敦 E1 4NS
[ "王承祥(1975- ),男,山东高密人,东南大学移动通信国家重点实验室教授、紫金山实验室兼职教授,主要研究方向为无线信道测量与建模、6G 通信网络架构和关键技术、人工智能与无线通信网络的融合等" ]
[ "黄杰(1991- ),男,湖北黄冈人,博士,东南大学移动通信国家重点实验室博士后、紫金山实验室兼职科研人员,主要研究方向为毫米波、太赫兹、大规模/超大规模天线信道测量与建模、B5G/6G关键技术等" ]
[ "王海明(1975- ),男,江苏江阴人,博士,东南大学毫米波国家重点实验室教授、紫金山实验室兼职教授,主要研究方向为毫米波无线通信、毫米波雷达成像、无线传播测量与信道建模、多频段宽带天线与阵列等" ]
[ "高西奇(1967- ),男,安徽灵璧人,东南大学移动通信国家重点实验室教授、紫金山实验室兼职教授,主要研究方向为宽带无线通信、大规模无线通信、无线通信信号处理等" ]
[ "尤肖虎(1962- ),男,山东济宁人,博士,东南大学移动通信国家重点实验室主任、紫金山实验室常务副主任,主要研究方向为移动通信、自适应信号处理、人工神经网络在通信及生物医学工程中的应用等" ]
[ "郝阳(1967- ),男,江苏南京人,博士,伦敦玛丽女王大学电子工程与计算机科学学院教授,主要研究方向为计算电磁学、微波超材料、石墨烯和纳米微波、体域网天线和无线传播、毫米波/亚毫米波有源天线、光子积体天线等" ]
纸质出版日期:2020-03-30,
网络出版日期:2020-03,
移动端阅览
王承祥, 黄杰, 王海明, 等. 面向6G的无线通信信道特性分析与建模[J]. 物联网学报, 2020,4(1):19-32.
CHENGXIANG WANG, JIE HUANG, HAIMING WANG, et al. 6G oriented wireless communication channel characteristics analysis and modeling. [J]. Chinese journal on internet of things, 2020, 4(1): 19-32.
王承祥, 黄杰, 王海明, 等. 面向6G的无线通信信道特性分析与建模[J]. 物联网学报, 2020,4(1):19-32. DOI: 10.11959/j.issn.2096-3750.2020.00155.
CHENGXIANG WANG, JIE HUANG, HAIMING WANG, et al. 6G oriented wireless communication channel characteristics analysis and modeling. [J]. Chinese journal on internet of things, 2020, 4(1): 19-32. DOI: 10.11959/j.issn.2096-3750.2020.00155.
针对 6G 全覆盖、全频谱、全应用的发展愿景,对面向 6G 的全频谱全场景无线信道测量、信道特性与信道模型方面的进展进行了全面概述,侧重于毫米波、太赫兹、光波段、卫星、无人机、海洋、水声、高铁、车对车、大规模/超大规模天线、轨道角动量以及工业物联网等通信信道,并展示了6G信道的相关测量与建模结果。最后,指出了6G无线信道测量与建模研究的未来挑战。
Based on the vision on the 6G wireless communication network
i.e.
global coverage
all spectrums and all applications
we comprehensively survey 6G related wireless channel measurements
channel characteristics
and channel models for all frequency bands and all scenarios.Millimeter wave (mmWave)
terahertz (THz)
optical band
satellite
unmanned aerial vehicle (UAV)
maritime
underwater acoustic
high-speed train (HST)
vehicle-to-vehicle (V2V)
massive/ultra-massive multiple-input multiple-output (MIMO)
orbital angular momentum (OAM)
and industry Internet of things (IoT) communication channels were particularly investigated.The related 6G channel measurement and modeling results were also given.Finally
future research challenges on 6G channel measurements and modeling were pointed out.
6G无线通信网络信道测量信道特性信道建模信道模型性能评估
6G wireless communication networkchannel measurementchannel characteristicchannel modeling
YANG P, XIAO Y, XIAO M ,et al. 6G wireless communications:vision and potential techniques[J]. IEEE Network, 2019,33(4): 70-75.
LETAIEF K B, CHEN W, SHI Y ,et al. The roadmap to 6G:AI empowered wireless networks[J]. IEEE Communications Magazine, 2019,57(8): 84-90.
ZHANG L, LIANG Y, NIYATO D . 6G visions:mobile ultra-broadband,super Internet-of-things,and artificial intelligence[J]. China Communications, 2019,16(8): 1-14.
ZONG B, FAN C, WANG X ,et al. 6G technologies:key drivers,core requirements,system architectures,and enabling technologies[J]. IEEE Vehicular Technology Magazine, 2019,14(3): 18-27.
ZHANG Z Q, XIAO Y, MA Z ,et al. 6G wireless networks:vision,requirements,architecture,and key technologies[J]. IEEE Vehicular Technology Magazine, 2019,14(3): 28-41.
HUANG T, YANG W, WU J ,et al. A survey on green 6G network:architecture and technologies[J]. IEEE Access, 2019,7: 175758-175768.
BI Q . Ten trends in the cellular industry and an outlook on 6G[J]. IEEE Communications Magazine, 2019,57(12): 31-36.
SAAD W, BENNIS M, CHEN M . A vision of 6G wireless systems:applications,trends,technologies,and open research problems[J].IEEE Network,2020. IEEE Network, 2020.
尤肖虎, 张川, 谈晓思 ,等. 基于AI的5G技术—研究方向与范例[J]. 中国科学:信息科学, 2018,48(12): 1589-1602.
YOU X H, ZHANG C, TAN X S ,et al. AI for 5G:research directions and paradigms[J]. Scientia Sinica (Informationis), 2018,48(12): 1589-1602.
HUANG J, LIU Y, WANG C X ,et al. 5G millimeter wave channel sounders,measurements,and models:recent developments and future challenges[J]. IEEE Communications Magazine, 2019,57(1): 138-145.
HUANG J, WANG C X, FENG R ,et al. Multi-frequency mmWave massive MIMO channel measurements and characterization for 5G wireless communication systems[J]. IEEE Journal on Selected Areas in Communications, 2017,35(7): 1591-1605.
RAPPAPORT T S, XING Y, KANHERE O ,et al. Wireless communications and applications above 100 GHz:opportunities and challenges for 6G and beyond[J]. IEEE Access, 2019,7: 78729-78757.
YANG K, PELLEGRINI A, MUNOZ M ,et al. Numerical analysis and characterization of THz propagation channel for body-centric nano-communications[J]. IEEE Transactions on Terahertz Science and Technology, 2015,5(3): 419-426.
PRIEBE S, JASTROW C, JACOB M ,et al. Channel and propagation measurements at 300 GHz[J]. IEEE Transactions on Antennas and Propagation, 2011,59(5): 1688-1698.
KIM S,ZAJIĆ A . Statistical characterization of 300GHz propagation on a desktop[J]. IEEE Transactions on Vehicular Technology, 2015,64(8): 3330-3338.
KIM S,ZAJIĆ A . Characterization of 300 GHz wireless channel on a computer motherboard[J]. IEEE Transactions on Antennas and Propagation, 2016,64(12): 5411-5423.
AL-KINANI A, WANG C X, ZHOU L ,et al. Optical wireless communication channel measurements and models[J]. IEEE Communications Surveys & Tutorials, 2018,20(3): 1939-1962.
AL-SAEGH A M, SALI A, MANDEEP J S ,et al. Channel measurements,characterization,and modeling for land mobile satellite terminals in tropical regions at Ku-band[J]. IEEE Transactions on Vehicular Technology, 2017,66(2): 897-911.
KHUWAJA A A, CHEN Y, ZHAO N ,et al. A survey of channel modeling for UAV communications[J]. IEEE Communications Surveys &Tutorials, 2018,20(4): 2804-2821.
KHAWAJA W, GUVENC I, MATOLAK D W ,et al. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles[J]. IEEE Communications Surveys & Tutorials, 2019,21(3): 2361-2391.
YAN C, FU L, ZHANG J ,et al. A comprehensive survey on UAV communication channel modeling[J]. IEEE Access, 2019,7: 107769-107792.
WANG J, ZHOU H.LI Y ,et al. Wireless channel models for maritime communications[J]. IEEE Access, 2018,6: 68070-68088.
STOJANOVIC M, PREISIG J . Underwater acoustic communication channels:propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009,47(1): 84-89.
WALREEP A . Propagation and scattering effects in underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013,38(4): 614-631.
LIU Y, WANG C X, HUANG J . Recent developments and future challenges in channel measurements and models for 5G and beyond high-speed train communication systems[J]. IEEE Communications Magazine, 2019,57(9): 50-56.
HE R, SCHNEIDER C, AI B ,et al. Propagation channels of 5G millimeter wave vehicle-to-vehicle communications:recent advances and future challenges[J]. IEEE Vehicular Technology Magazine, 2020.
WANG D, ZHANG Y, WEI H ,et al. An overview of transmission theory and techniques of large-scale antenna systems for 5G wireless communications[J]. Science China Information Sciences, 2016,46(1): 3-21.
GUNNARSSON S, FLORDELIS J, PERRE L ,et al. Channel hardening in massive MIMO—a measurement based analysis[C]// IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2018.
LI J, ZHAO Y . Channel characterization and modeling for large-scale antenna systems[C]// IEEE International Symposium on Communications & Information Technologies. IEEE, 2015.
LU Y, TAO C, LIU L ,et al. Spatial characteristics of the massive MIMO channel based on indoor measurement at 1.4725 GHz[J]. IET Communications, 2018,12(2): 192-197.
WANG Q, CAO Z, DEBBARMA D ,et al. Measurements and performance of large MIMO systems at 2.4 GHz for indoor WLAN[C]// IEEE 21st Symposium on Communications and Vehicular Technology(SCVT). IEEE, 2014: 35-40.
LI W, LIU L, TAO C ,et al. Channel measurements and angle estimation for massive MIMO systems in a stadium scenario[C]// 17th International Conference on Advanced Communication Technology(ICACT). 2015: 105-108.
GAO X, EDFORS O, RUSEK F ,et al. Massive MIMO performance evaluation based on measured propagation data[J]. IEEE Transactions on Wireless Communications, 2015,14(7): 3899-3911.
HARRIS P, MALKOWSKY S, VIEIRA J ,et al. Performance characterization of a real-time massive MIMO system with LOS mobile channels[J]. IEEE Journal on Selected Areas in Communications, 2017,35(6): 1244-1253.
EDFORS O, JOHANSSON A J . Is orbital angular momentum (OAM) based radio communication an unexploited area[J]. IEEE Transactions on Antennas and Propagation, 2012,60(2): 1126-1131.
CHEN R, XU H, YANG W ,et al. On the performance of OAM in keyhole channels[J]. IEEE Wireless Communications Letters, 2019,8(1): 313-316.
YAO Y, LIANG X, ZHU M ,et al. Analysis and experiments on reflection and refraction of orbital angular momentum waves[J]. IEEE Transactions on Antennas and Propagation, 2019,67(4): 2085-2094.
YAN Y, LI L, XIE G ,et al. Multipath effects in millimetre-wave wireless communication using orbital angular momentum multiplexing[J]. Scientific Reports, 2016,6:33482.
HUI X, ZHENG S, CHEN Y ,et al. Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas[J]. Scientific Reports, 2015,5:10148.
WANG L, GE X, ZI R ,et al. Capacity analysis of orbital angular momentum wireless channels[J]. IEEE Access, 2017,5: 23069-23077.
WANG W, CAPITANEANU S L, MARINCA D ,et al. Comparative analysis of channel models for industrial IoT wireless communication[J]. IEEE Access, 2019,7: 91627-91640.
CHRYSIKOS T, GEORGAKOPOULOS P, OIKONOMOU I ,et al. Measurement-based characterization of the 3.5 GHz channel for 5G-enabled IoT at complex industrial and office topologies[C]// Wireless Telecommunications Symposium (WTS). 2018: 1-9.
SOLOMITCKII D, ORSINO A, ANDREEV S ,et al. Characterization of mmWave channel properties at 28 and 60 GHz in factory automation deployments[C]// IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2018: 1-6.
WANG C X, BIAN J, SUN J ,et al. A survey of 5G channel measurements and models[J]. IEEE Communications Surveys & Tutorials, 2018,20(4): 3142-3168.
BAI L, WANG C X, GOUSSETIS G ,et al. Channel modeling for satellite communication channels at Q-band in high latitude[J]. IEEE Access, 2019,7: 137691-137703.
CHANG H T, BIAN J, WANG C X ,et al. A 3D non-stationary wideband GBSM for low-altitude UAV-to-ground V2V MIMO channels[J]. IEEE Access, 2019,7: 70719-70732.
HE Y B, CHANG H T, WANG C X ,et al. A 3D GBSM for ship-to-land communications[C]// IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2019.
LIU Y, WANGC X, HUANG J ,et al. Novel 3D non-stationary mmWave massive MIMO channel models for 5G high-speed train wireless communications[J]. IEEE Transactions on Vehicular Technology, 2019,68(3): 2077-2086.
BIAN J, WANG C X, HUANG J ,et al. A 3D wideband non-stationary multi-mobility model for vehicle-to-vehicle MIMO channels[J]. IEEE Access, 2019,7: 32562-32577.
WU S B, WANG C X, AGGOUNE H ,et al. A non-stationary 3D wideband twin-cluster model for 5G massive MIMO channels[J]. IEEE Journal on Selected Areas in Communications, 2014,32(6): 1207-1218.
CHENG W C, ZHANG W, JING H Y . Orbital angular momentum for wireless communications[J]. IEEE Wireless Communications, 2019,26(1): 100-107.
LIANG L P, CHENG W C, ZHANG W . Joint OAM multiplexing and OFDM in sparse multipath environments[J]. IEEE Transactions on Vehicular Technology, 2020.
WU S B, WANG C X, AGGOUNE E M ,et al. A general 3-D non-stationary 5G wireless channel model[J]. IEEE Transactions on Communications, 2018,66(7): 3065-3078.
WU Q Q, ZHANG R . Towards smart and reconfigurable environment:intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020,58(1): 106-112.
HUANG J, WANG C X, BAI L ,et al. A big data enabled channel model for 5G wireless communication systems[J]. IEEE Transactions on Big Data, 2020,6(2).
SAYEEDA M . Deconstructing multi antenna fading channels[J]. IEEE Transactions on Signal Processing, 2002,50(10): 2563-2579.
SUN C, GAO X Q, JIN S ,et al. Beam division multiple access transmission for massive MIMO communications[J]. IEEE Transactions on Communications, 2015,63(6): 2170-2184.
SUN C, GAO X, DING Z . BDMA in multicell massive MIMO communications:power allocation algorithms[J]. IEEE Transactions on Signal Processing, 2017,65(11): 2962-2974.
0
浏览量
1892
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构