浏览全部资源
扫码关注微信
1. 东南大学移动通信国家重点实验室,江苏 南京 210096
2. 东南大学教育部移动信息通信与安全前沿科学中心,江苏 南京 210096
3. 网络通信与安全紫金山实验室,江苏 南京 211111
[ "张在琛(1975- ),男,博士,东南大学、网络通信与安全紫金山实验室教授,主要研究方向为6G移动通信系统、无线光通信和量子信息技术等" ]
[ "尤肖虎(1962- ),男,博士,东南大学移动通信国家重点实验室主任,主要研究方向为无线移动通信与信号处理" ]
[ "党建(1985- ),男,博士,东南大学、网络通信与安全紫金山实验室副教授,主要研究方向为光无线通信技术和大规模移动通信技术" ]
[ "吴亮(1984- ),男,博士,东南大学、网络通信与安全紫金山实验室副教授,主要研究方向为MIMO传输技术、感知通信一体化技术、无线定位技术、无线光通信技术等" ]
[ "朱秉诚(1988- ),男,博士,东南大学、网络通信与安全紫金山实验室副研究员,主要研究方向为无线光定位、无线光通信和移动通信技术" ]
[ "陈绩(1991- ),男,博士,东南大学副研究员,主要研究方向为无线光通信、智能光子计算、超构光子学和先进成像技术等" ]
[ "汪磊(1988- ),男,博士,东南大学、网络通信与安全紫金山实验室副研究员,主要研究方向为微纳光子超表面、光子智能芯片和6G新空口技术等" ]
纸质出版日期:2022-09-30,
网络出版日期:2022-09,
移动端阅览
张在琛, 尤肖虎, 党建, 等. 无线光通信与物联网[J]. 物联网学报, 2022,6(3):1-13.
ZAICHEN ZHANG, XIAOHU YOU, JIAN DANG, et al. Optical wireless communication and internet of things. [J]. Chinese journal on internet of things, 2022, 6(3): 1-13.
张在琛, 尤肖虎, 党建, 等. 无线光通信与物联网[J]. 物联网学报, 2022,6(3):1-13. DOI: 10.11959/j.issn.2096-3750.2022.00278.
ZAICHEN ZHANG, XIAOHU YOU, JIAN DANG, et al. Optical wireless communication and internet of things. [J]. Chinese journal on internet of things, 2022, 6(3): 1-13. DOI: 10.11959/j.issn.2096-3750.2022.00278.
无线光通信具有频谱免授权、电磁兼容性好等许多与射频无线通信截然不同的优良性质,使其有望成为未来物联网差异化发展的重要技术驱动力。首先,从无线光通信的光源和光学器件出发,介绍了其基本原理和限制;接着,从信道建模、信号调制、阵列通信和高精度定位等角度探讨了无线光通信的若干关键技术;在此基础上,依据下一代物联网对峰值速率、感知精度、能量传输和安全保密等技术指标的需求,分析了无线光通信如何使能下一代物联网;最后进行了总结。
Optical wireless communication (OWC) entitles many advantageous properties such as unlicensed spectrum
high electromagnetic compatibility
compared with its radio frequency wireless counterpart
which enables it to be a potential important driving factor for the diverse developments of future internet of things (IoT).Starting from the optical sources and optical devices
some basic principles and limitations of OWC were introduced.Then
some key technologies
including channel modeling
signal modulation
array communication and high-precision positioning were discussed.Based on those and according to the requirements on peak data rate
sensing precision
energy transfer and security and confidentiality of the next generation IoT
the role of OWC as a technological enabler for next generation IoT was analyzed.Finally
related conclusions were given.
无线光通信物联网光源阵列通信高精度定位
optical wireless communicationinternet of thingsoptical sourcearray communicationhigh precision positioning
AYYASH M, ELGALA H, KHREISHAH A ,et al. Coexistence of WiFi and LiFi toward 5G,concepts,opportunities,and challenges[J]. IEEE Communications Magazine, 2016,54(2): 64-71.
BOR M, VIDLER J, ROEDIG U ,et al. LoRa for the internet of things[EB]. 2016.
ERGEN S C . ZigBee/IEEE 802.15.4 Summary[J]. UC Berkeley, 2004,10(17): 11.
YANG J, SONG L, KOEPPE A . LTE field performance for IoT applications[C]// Proceedings of 2016 IEEE 84th Vehicular Technology Conference. Piscataway,IEEE Press, 2016: 1-5.
3GPP. Overview of 3GPP Release 8[EB]. 2014.
NGUYEN D C, DING M, PATHIRANA P N ,et al. 6G internet of things,a comprehensive survey[J]. IEEE Internet of Things Journal, 2022,9(1): 359-383.
ZHANG L, LIANG Y C, NIYATO D . 6G Visions,mobile ultra-broadband,super Internet-of-things,and artificial intelligence[J]. China Communications, 2019,16(8): 1-14.
KESHAV S, SHUI Y, DINH N ,et al. A tutorial on next generation heterogeneous IoT networks and node authentication[J]. IEEE Internet of Things Magazine, 2021,4: 120-126.
KOMINE T, NAKAGAWA M . Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Transactions on Consumer Electronics, 2004,50(1): 100-107.
PANG G, KWAN T, CHAN C H ,et al. LED traffic light as a communications device[C]// Proceedings of Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat.No.99TH8383). Piscataway,IEEE Press, 1999: 788-793.
KARUNATILAKA D, ZAFAR F, KALAVALLY V ,et al. LED based indoor visible light communications,state of the art[J]. IEEE Communications Surveys & Tutorials, 2015,17(3): 1649-1678.
JUNGNICKEL V . Optical wireless in 5G[EB]. 2016.
郑运强, 刘欢, 孟佳成 ,等. 空基激光通信研究进展和趋势以及关键技术[J]. 红外与激光工程, 1-15.
ZHENG Y Q, LIU H, MENG J C ,et al. Research progress,trends and key technologies of space-based laser communication[J]. Infrared and Laser Engineering: 1-15.
YAN L S, WANG F, WU W ,et al. Current status and key technologies of unmanned aerial vehicle laser communication payloads[J]. Laser &Optoelectronics Progress, 2016,53(8): 080005.
李学良 . 大气激光通信数字相干探测关键技术研究[D]. 北京:中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.
LI X L . Researches on several key technologies for free space optical communication based on digital coherent detection[D]. Beijing,Institute of Physics,Chinese Academy of Sciences, 2018.
WANG K, YUAN Z S, WONG E ,et al. Experimental demonstration of indoor infrared optical wireless communications with a silicon photonic integrated circuit[J]. Journal of Lightwave Technology, 2019,37(2): 619-626.
IGA K . Surface-emitting laser-its birth and generation of new optoelectronics field[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000,6(6): 1201-1215.
LIU A J, WOLF P, LOTT J A ,et al. Vertical-cavity surface-emitting lasers for data communication and sensing[J]. Photonics Research, 2019,7(2): 121.
AKAISHI A, TAKAHASHI T, FUJINO Y ,et al. Development of optically controlled beam-forming network[J]. IEICE Transactions on Communications, 2012,E95.B(11): 3404-3411.
ZHAO J . A survey of intelligent reflecting surfaces (IRSs),towards 6G wireless communication networks[EB]. 2019,arXiv,1907.04789.
姚建文, 王楠 . 智能反射面,大有前景的 6G 技术[J]. 电信快报, 2020,(7): 8-13.
YAO J W, WANG N . Intelligent reflecting surface,a promising technique for 6G[J]. Telecommunications Information, 2020,(7): 8-13.
CHEN P, WEI B Y, HU W ,et al. Liquid-crystal-mediated geometric phase,from transmissive to broadband reflective planar optics[J]. Advanced Materials, 2020,32(27): 1903665.
HU W, CHEN P, LU Y Q . Photoinduced liquid crystal domain engineering for optical field control,preparation,properties,and applications[J]. Photoactive Functional Soft Materials,Preparation,Properties,and Applications, 2019: 361-387.
TAO J, YOU Q, LI Z L ,et al. Mass-manufactured beam-steering metasurfaces for high-speed full-duplex optical wireless-broadcasting communications[J]. Advanced Materials, 2022,34(6): 2106080.
FENG F, WHITE I H, WILKINSON T D . Holographic beam steering a directly modulated two-electrode high brightness tapered laser diode for optical wireless communications[C]// Proceedings of Asia Communications and Photonics Conference.Washington,D.C. ,OSA, 2012: 1-3.
XU D M, TAN G J, WU S T . Large-angle and high-efficiency tunable phase grating using fringe field switching liquid crystal[J]. Optics Express, 2015,23(9): 12274-12285.
CHANG Q B, CHEN W S, LIU J K ,et al. Development of a novel two-DOF piezo-driven fast steering mirror with high stiffness and good decoupling characteristic[J]. Mechanical Systems and Signal Processing, 2021159,107851
王福超, 王昱棠, 田大鹏 . 音圈快速反射镜的完全跟踪控制[J]. 光学精密工程, 2020,28(9): 1997-2006.
WANG F C, WANG Y T, TIAN D P . Perfect tracking control for fast-steering mirror driven by voice coil motor[J]. Optics and Precision Engineering, 2020,28(9): 1997-2006.
岳冰, 杨文淑, 傅承毓 . 空间光通信中的快速倾斜镜精跟踪实验系统[J]. 光电工程, 2002,29(3): 35-38,42.
YUE B, YANG W S, FU C Y . Experiments on precision tracking system with a fast steering mirror in space laser communication[J]. Opto-Electronic Engineering, 2002,29(3): 35-38,42.
BRANDL P, SCHIDL S, POLZER A ,et al. Optical wireless communication with adaptive focus and MEMS-based beam steering[J]. IEEE Photonics Technology Letters, 2013,25(15): 1428-1431.
CHU P B, LEE S S, PARK S . MEMS,the path to large optical crossconnects[J]. IEEE Communications Magazine, 2002,40(3): 80-87.
BRANDL P, SCHIDL S, POLZER A ,et al. Optical wireless communication with adaptive focus and MEMS-based beam steering[J]. IEEE Photonics Technology Letters, 2013,25(15): 1428-1431.
SARBAZI E, UYSAL M, ABDALLAH M ,et al. Indoor channel modelling and characterization for visible light communications[C]// Proceedings of 2014 16th International Conference on Transparent Optical Networks (ICTON). Piscataway,IEEE Press, 2014: 1-4.
MIRAMIRKHANI F, UYSAL M, PANAYIRCI E . Novel channel models for visible light communications[C]// SPIE OPTO.Proc SPIE 9387,Broadband Access Communication Technologies IX,[S.l.:s.n.], 2015,9387: 150-162.
KAHN J M, BARRY J R . Wireless infrared communications[J]. Proceedings of the IEEE, 1997,85(2): 265-298.
CARRUTHERS J B, KANNAN P . Iterative site-based modeling for wireless infrared channels[J]. IEEE Transactions on Antennas and Propagation, 2002,50(5): 759-765.
WU D, GHASSEMLOOY Z, LE MINH H ,et al. Optimisation of Lambertian order for indoor non-directed optical wireless communication[C]// Proceedings of 2012 1st IEEE International Conference on Communications in China Workshops. Piscataway,IEEE Press, 2012: 43-48.
AL-KINANI A, WANG C X, HAAS H ,et al. Characterization and modeling of visible light communication channels[C]// Proceedings of 2016 IEEE 83rd Vehicular Technology Conference. Piscataway,IEEE Press, 2016: 1-5.
WANG J, AL-KINANI A, ZHANG W S ,et al. A general channel model for visible light communications in underground mines[J]. China Communications, 2018,15(9): 95-105.
DAVIS J, TANGO W . Measurement of the atmospheric coherence time[J]. Publications of the Astronomical Society of the Pacific, 1996,108,456.
AL-HABASH A, ANDREWS L C, PHILLIPS R L . Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[J]. Optical Engineering, 2001,40: 1554-1562.
ZENG Z Q, FU S, ZHANG H H ,et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2017,19(1): 204-238.
COCHENOUR B M, MULLEN L J, LAUX A E . Characterization of the beam-spread function for underwater wireless optical communications links[J]. IEEE Journal of Oceanic Engineering, 2008,33(4): 513-521.
YANG X Q, TONG Z J, DAI Y Z ,et al. 100 m full-duplex underwater wireless optical communication based on blue and green lasers and high sensitivity detectors[J]. Optics Communications, 2021,498:127261.
GONZÁLEZ O, RABADÁN J, PÉREZ-JIMÉNEZ R ,et al. Adaptive OFDM system for communications over the indoor wireless optical channel[J]. IEE Proceedings – Optoelectronics, 2006,153(4): 139-144.
WU L, ZHANG Z C, DANG J ,et al. Adaptive modulation schemes for visible light communications[J]. Journal of Lightwave Technology, 2015,33(1): 117-125.
HUANG X, YANG F, SONG J ,et al. Subcarrier and power allocations for enhanced ADO-OFDM with dimming control[C]// Proceedings of ICC 2019 – 2019 IEEE International Conference on Communications. Piscataway,IEEE Press, 2019: 1-6.
DANG J, ZHANG Z C, WU L . Improving the power efficiency of enhanced unipolar OFDM for optical wireless communication[J]. Electronics Letters, 2015,51(21): 1681-1683.
SUN Y Q, YANG F, GAO J N . Comparison of hybrid optical modulation schemes for visible light communication[J]. IEEE Photonics Journal, 2017,9(3): 1-13.
TELATAR E . Capacity of multi-antenna Gaussian channels[J]. European Transactions on Telecommunications, 1999,10(6): 585-595.
PAULRAAJ A, ROHITA P, NABARR ,et al. Introduction to space-time wireless communications[M]. Cambridge,Cambridge university press, 2003.
BIGLIERI E, CALDERBANK R, CONSTANTINIDES A ,et al. MIMO wireless communications[M]. Cambridge,Cambridge University Press, 2007.
WU L, ZHANG Z, LIU H . Modulation scheme based on precoder matrix for MIMO optical wireless communication systems[J]. IEEE Communications Letters, 2012,16(9): 1516-1519.
WANG C X, HAIDER F, GAO X ,et al. Cellular architecture and key technologies for 5G wireless communication networks[J]. IEEE Communications Magazine, 2014,52(2): 122-130.
JOVICIC A, LI J Y, RICHARDSON T . Visible light communication:opportunities,challenges and the path to market[J]. IEEE Communications Magazine, 2013,51(12): 26-32.
DANG J, WU M T, WU L ,et al. Transceiver design for MIMO DCO-OFDM in visible light communication[M]// Visible Light Communications. Rijeka,InTech, 2017.
LI B L, WANG J H, ZHANG R ,et al. Multiuser MISO transceiver design for indoor downlink visible light communication under per-LED optical power constraints[J]. IEEE Photonics Journal, 2015,7(4): 1-15.
HUANG N, WANG X D, CHEN M . Transceiver design for MIMO VLC systems with integer-forcing receivers[J]. IEEE Journal on Selected Areas in Communications, 2018,36(1): 66-77.
MESLEH R Y, HAAS H, SINANOVIC S ,et al. Spatial modulation[J]. IEEE TransactionsonVehicular Technology, 2008,57(4): 2228-2241.
FATH T, HAAS H . Performance comparison of MIMO techniques for optical wireless communications in indoor environments[J]. IEEE Transactions on Communications, 2013,61(2): 733-742.
POPOOLA W O, POVES E, HAAS H . Spatial pulse position modulation for optical communications[J]. Journal of Lightwave Technology, 2012,30(18): 2948-2954.
OLANREWAJU H G, POPOOLA W O . Effect of synchronization error on optical spatial modulation[J]. IEEE Transactions on Communications, 2017,65(12): 5362-5374.
MESLEH R, ELGALA H, HAAS H . Optical spatial modulation[J]. Journal of Optical Communications and Networking, 2011,3(3): 234.
WU L, CHENG J L, ZHANG Z C ,et al. Low-complexity spatial modulation for IM/DD optical wireless communications[J]. IEEE Photonics Technology Letters, 2019,31(6): 475-478.
WU L, SHEN Y T, ZHANG Z C ,et al. Receiver algorithms for single-carrier OSM based high-rate indoor visible light communications[J]. IEEE Transactions on Wireless Communications, 2020,19(2): 1113-1126.
OLANREWAJU H G, THOMPSON J, POPOOLA W O . Performance of optical spatial modulation in indoor multipath channel[J]. IEEE Transactions on Wireless Communications, 2018,17(9): 6042-6052.
ZENG L B, O’BRIEN D C,, MINH H L ,et al. High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting[J]. IEEE Journal on Selected Areas in Communications, 2009,27(9): 1654-1662.
MONDAL R K, SAHA N, JANG Y M . Performance enhancement of MIMO based visible light communication[C]// Proceedings of 2013 International Conference on Electrical Information and Communication Technology (EICT). Piscataway,IEEE Press, 2014: 1-5.
WANG C F, LI G Q, HU F C ,et al. Visible light communication for Vehicle to Everything beyond 1 Gb/s based on an LED car headlight and a 2 × 2 PIN array[J]. Chinese Optics Letters, 2020,18(11): 110602.
KAZEMI H, SARBAZI E, SOLTANI M D ,et al. A Tb/s indoor MIMO optical wireless backhaul system using VCSEL arrays[J]. IEEE Transactions on Communications, 2022,70(6): 3995-4012.
SUN C, GAO X Q, WANG J H ,et al. Beam domain massive MIMO for optical wireless communications with transmit lens[J]. IEEE Transactions on Communications, 2019,67(3): 2188-2202.
YOU Q, LI C, XIAO X ,et al. Programmable 1.47 bit/s (92 Gb/s x 16) optical wireless broadcasting system empowered by a single spatial light modulator and a modified RSS algorithm[J]. Optics Express, 2021,29(13): 19373-19383.
GLUSHKO B, SHAR A, MEDINA M ,et al. MEMS-based tracking for an indoor optical wireless communication bidirectional link[J]. IEEE Photonics Technology Letters, 2016,28(5): 550-553.
ZHANG K H, ZHU B C, ZHANG Z C ,et al. Tracking system for fast moving nodes in optical mobile communication and the design rules[J]. IEEE Transactions on Wireless Communications, 2021,20(4): 2716-2728.
WANG H B, ZHANG Z C, ZHU B C ,et al. Performance analysis of multi-branch reconfigurable intelligent surfaces-assisted optical wireless communication system in environment with obstacles[J]. IEEE Transactions on Vehicular Technology, 2021,70(10): 9986-10001.
NAKAJIMA M, HARUYAMA S . New indoor navigation system for visually impaired people using visible light communication[J]. EURASIP Journal on Wireless Communications and Networking,2013, 2013,37.
ARMSTRONG J, SEKERCIOGLU Y A, NEILD A . Visible light positioning,a roadmap for international standardization[J]. IEEE Communications Magazine, 2013,51(12): 68-73.
LV H C, FENG L H, YANG A Y ,et al. High accuracy VLC indoor positioning system with differential detection[J]. IEEE Photonics Journal, 2017,9(3): 1-13.
FANG J B, YANG Z, LONG S ,et al. High-speed indoor navigation system based on visible light and mobile phone[J]. IEEE Photonics Journal, 2017,9(2): 1-11.
KIM J Y, YANG S H, SON Y H ,et al. High-resolution indoor positioning using light emitting diode visible light and camera image sensor[J]. IET Optoelectronics, 2016,10(5): 184-192.
ZHU B C, CHENG J L, WANG Y J ,et al. Three-dimensional VLC positioning based on angle difference of arrival with arbitrary tilting angle of receiver[J]. IEEE Journal on Selected Areas in Communications, 2018,36(1): 8-22.
VONGKULBHISAL J, CHANTARAMOLEE B, ZHAO Y ,et al. A fingerprinting-based indoor localization system using intensity modulation of light emitting diodes[J]. Microwave and Optical Technology Letters, 2012,54(5): 1218-1227.
KONINGS D, FAULKNER N, ALAM F ,et al. Field light,device-free indoor human localization using passive visible light positioning and artificial potential fields[J]. IEEE Sensors Journal, 2020,20(2): 1054-1066.
CHEN Y R, GUAN W P, LI J Y ,et al. Indoor real-time 3-D visible light positioning system using fingerprinting and extreme learning machine[J]. IEEE Access, 2020(8): 13875-13886.
中国移动通信研究院. 下一代物联网发展构想白皮书[R]. 2021.
China Mobile Communication Research Institute. Development conception of next generation internet of things white paper[R]. 2021.
PERAHIA E, GONG M X . Gigabit wireless LANs[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2011,15(3): 23-33.
DAVISON A J, REID I D, MOLTON N D ,et al. MonoSLAM:real-time single camera SLAM[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29(6): 1052-1067.
KIM B W, JUNG S Y . Vehicle positioning scheme using V2V and V2I visible light communications[C]// Proceedings of 2016 IEEE 83rd Vehicular Technology Conference. Piscataway,IEEE Press, 2016: 1-5.
SCHMUCK P, CHLI M . Multi-UAV collaborative monocular SLAM[C]// Proceedings of 2017 IEEE International Conference on Robotics and Automation. Piscataway,IEEE Press, 2017: 3863-3870.
周治国, 曹江微, 邸顺帆 . 3D激光雷达SLAM算法综述[J]. 仪器仪表学报, 2021,42(9): 13-27.
ZHOU Z G, CAO J W, DI S F . Overview of 3D lidar SLAM algorithms[J]. Chinese Journal of Scientific Instrument, 2021,42(9): 13-27.
ZHANG W, KAVEHRAD M . Comparison of VLC-based indoor positioning techniques[C]// SPIE OPTO.Proc SPIE 8645,Broadband Access Communication Technologies VII,SanFrancisco,California,USA. 2013, 8645: 152-157.
TRAN H Q, HA C . Fingerprint-based indoor positioning system using visible light communication—A novel method for multipath reflections[J]. Electronics, 2019,8(1): 63.
LIN B J, TANG X, GHASSEMLOOY Z ,et al. Experimental demonstration of an indoor VLC positioning system based on OFDMA[J]. IEEE Photonics Journal, 2017,9(2): 1-9.
周玮阳, 金科 . 无人机远程激光充电技术的现状和发展[J]. 南京航空航天大学学报, 2013,45(6): 784-791.
ZHOU W Y, JIN K . Status and trends of laser powered unmanned aerial vehicles[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013,45(6): 784-791.
GEISZ J F, FRANCE R M, SCHULTE K L ,et al. [J]. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration, 2020,5(4): 326-335.
JIN K, ZHOU W Y . Wireless laser power transmission,a review of recent progress[J]. IEEE Transactions on Power Electronics, 2019,34(4): 3842-3859.
TURAN B, GURBILEK G, UYRUS A ,et al. Vehicular VLC frequency domain channel sounding and characterization[C]// Proceedings of 2018 IEEE Vehicular Networking Conference. Piscataway,IEEE Press, 2018: 1-8.
ZHANG Z C, WU L, DANG J ,et al. Optical mobile communications:principles and challenges[C]// Proceedings of 2017 26th Wireless and Optical Communication Conference (WOCC). Piscataway,IEEE Press, 2017: 1-4.
ZHANG Z C, DANG J, WU L ,et al. Optical mobile communications:principles,implementation,and performance analysis[J]. IEEE Transactions on Vehicular Technology, 2019,68(1): 471-482.
GAO J J, DANG J, ZHANG Z C ,et al. Rate analysis of intensity modulated broadcast optical mobile communication system with user mobility[J]. IEEE Photonics Journal, 2020,12(5): 1-12.
DANG J, GAO J J, ZHANG Z C ,et al. Performance of optical mobile communications with user mobility and multiple light sources[J]. Wireless Communications and Mobile Computing,2021, 2021:5573946.
重磅发布!2021中国光学领域十大社会影响力事件[EB]. 2021.
Heavy release! 2021 top ten social influence events in China’s optical field[EB]. 2021.
0
浏览量
842
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构